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Deep Learning
● Models based on the composition of many 

parameterized function modules trained from 
examples using gradient-based optimization.

● Very powerful and popular, but mysterious 
modern machine learning method.

● Heavily used in Computer Vision, Natural 
Language Processing, and many other fields.



Generalization
● “The evidence, or marginal likelihood,                                                             , is the probability 

we would generate a dataset if we were to randomly sample from the prior over functions   
induced by a prior over parameters          .”

● Inductive biases are “the relative the relative prior probabilities of different datasets — the 
distribution of support given by                 .” 

● “The support is the range of datasets for which                        .”

● Deep Learning models have a large support and thus fit many datasets.

Wilson, A. G. and Izmailov, P. 2020.





CIFAR-10 Dataset



Bayesian Approach (marginalization)
We want to compute the Bayesian model average (BMA):

y  - outputs (e.g., regression values, class labels, . . . )
x - inputs (e.g. spatial locations, images, . . . )
w - weights (or parameters) of the model
    - data 

Instead of using a single setting of parameters, we use all possible parameter settings 
weighed by their posterior probabilities.



Classical vs. Bayesian Approach

● Classical training can be seen as using 
○ Leads to standard predictive distribution

● If the actual posterior is not unimodal with a sharp peak, then the delta function is not 

a reasonable approximation.

● Bayesian Deep Learning: using the Bayesian model average (BMA for deep learning 

models.

BMA:



The case for Bayesian Deep Learning
● Neural networks tend to be underspecified by the data.

○ Many more parameters than data.
○ Leads to diffuse likelihoods                 which do not favor any one set of parameters.

● Many different high performing models corresponding to different settings
of parameters.*

*Garipov et al., 2018; Izmailov et al., 2019



● Solutions in flat regions of the posterior correspond to better generalization [1].

● These flat solutions take up much more volume in high dimensions [2].

The case for Bayesian Deep Learning

[1] Garipov et al., 2018; Izmailov et al., 2018             [2] Huang et al., 2019       Diagram: Keskar et. al, 2017 



The case for Bayesian Deep Learning
● Uncertainty representation

● Examine the spread of the predictive distribution,                  .   .

● Improved accuracy 
● Averaging the predictions of multiple, accurate models that disagree in some cases should lead 

to improved accuracy. 

● Empirically shown in Deep Ensembles and Subspace inference.

● Explainability due to the probabilistic underpinnings
● Bayesian model average is a statement in probability.



Computing (approximate inference)

● BMA:

○ Very non-convex posterior landscape and a very high dimensional parameter 
space.

○ Not analytic (for most models).

● Solution: Simple Monte Carlo approximation

are samples from an approximate posterior               . 



Approximate Posterior

● Deterministic Methods
○ Approximate                with                   , usually Gaussian.
○ Examples:

■ Laplace, Expectation Propagation, Variational, Standard Training.

● MCMC
○ Create a Markov chain of approximate samples from               .
○ Examples: 

■ Metropolis-Hastings, Hamiltonian Monte Carlo (HMC), Stochastic gradient HMC, 
Stochastic gradient Langevin dynamics.



Downsides of Bayesian Deep Learning

● Computational cost

● Computational intractability
● No exact solution to the Bayesian model average.

● Many design decisions
● Aproximate Inference method.
● More hyperparameters.
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