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Deep Learning

Models based on the composition of many
parameterized function modules trained from

examples using gradient-based optimization.

Very powerful and popular, but mysterious

modern machine learning method.

Heavily used in Computer Vision, Natural

Language Processing, and many other fields.
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Generalization
® “The evidence, or marginal likelihood, p(D|M) = [ p(D|M,w)p(w)dw, is the probability
we would generate a dataset if we were to randomly sample from the prior over functions p(f(x))

induced by a prior over parameters p(w).”

® Inductive biases are “the relative the relative prior probabilities of different datasets — the

distribution of support given by p(DIM) »
® “The support is the range of datasets for which p(DIM) > 0 »

® Deep Learning models have a large support and thus fit many datasets.

Wilson, A. G. and Izmailov, P. 2020.
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Bayesian Approach (marginalization)

We want to compute the Bayesian model average (BMA):

plylr, D) = /p(y\:c,w)p(w\]))dw

y - outputs (e.g., regression values, class labels, . . .)
x - inputs (e.g. spatial locations, images, . . . )

w - weights (or parameters) of the model

D - data

Instead of using a single setting of parameters, we use all possible parameter settings

weighed by their posterior probabilities.



Classical vs. Bayesian Approach
BMA: p(y|z, D) —/p(yaf,w)p(w|D)dw

e (lassical training can be seen as using p(w|D) ~ §(w =) 1w = argmax,,p(w|D)

o Leads to standard predictive distribution

plylz; w)

e [f the actual posterior is not unimodal with a sharp peak, then the delta function is not

a reasonable approximation.

e Bayesian Deep Learning: using the Bayesian model average (BMA for deep learning

models.



The case for Bayesian Deep Learning

e Neural networks tend to be underspecified by the data.

o  Many more parameters than data.

o Leads to diffuse likelihoods p(D|w), which do not favor any one set of parameters.

e Many different high performing models corresponding to different settings

of parameters.* P(DIM) )
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The case for Bayesian Deep Learning

e Solutions in flat regions of the posterior correspond to better generalization [1].

e These flat solutions take up much more volume in high dimensions [2].
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[1] Garipov et al., 2018; Izmailov et al., 2018
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The case for Bayesian Deep Learning

e Uncertainty representation

® Examine the spread of the predictive distribution, p(% | T, w) .

e [Improved accuracy

® Averaging the predictions of multiple, accurate models that disagree in some cases should lead
to improved accuracy.

® Empirically shown in Deep Ensembles and Subspace inference.

e Explainability due to the probabilistic underpinnings

® Bayesian model average is a statement in probability.



Computing (approximate inference)

o BMA: p(ylz,D) = / p(ylz, w)p(w|D)dw
o Very non-convex posterior landscape and a very high dimensional parameter

space.

o Not analytic (for most models).

e Solution: Simple Monte Carlo approximation
p(ylx, D) Zp (y|z,w;), w;~ q(w|D)

w; are samples from an approx1mate posterior ¢(w|D).



Approximate Posterior ¢(w|D)

e Deterministic Methods
o Approximate p(w|D) with ¢(w|D, ), usually Gaussian.

o Examples:
m Laplace, Expectation Propagation, Variational, Standard Training.

o MCMC

o Create a Markov chain of approximate samples from p(w|D).

o Examples:
m  Metropolis-Hastings, Hamiltonian Monte Carlo (HMC), Stochastic gradient HMC,
Stochastic gradient Langevin dynamics.



Downsides of Bayesian Deep Learning

e Computational cost

e Computational intractability

e No exact solution to the Bayesian model average.

e Many design decisions
e Aproximate Inference method.

e More hyperparameters.
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