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1 Introduction

The topic that will be discussed in this report is applying a Bayesian framework to deep learn-
ing models, which commonly goes by the name Bayesian deep learning. The paper that this
report is primarily based on is Bayesian Deep Learning and a Probabilistic Perspec-
tive of Generalization by Andrew Gordon Wilson and Pavel Izamilov [I], which was
recently published in 2020. The mathematical nomenclature and notations will primarily be
based on the ones used in this paper, and in other similar literature. For lack of clutter, quo-

tations and diagrams throughout the report will belong to this paper, unless otherwise specified.

The manuscript The Case for Bayesian Deep Learning [17] and the conference tutorial presen-
tation Bayesian Deep Learning and a Probabilistic Perspective of Model Construction [16] both
by Andrew Gordon Wilson will also be primary sources of reference. Additionaly, I will be
using a planetary science paper, A Bayesian neural network predicts the dissolution of compact
planetary systems, authored by Miles Cranmer et al. [3], as a real-world application of Bayesian
deep learning. In addition, to these sources there are several secondary papers that the primary

sources and I use to explain certain points in more detail.

2 Deep Learning Primer

To understand Bayesian Deep Learning we first must go over the basics of deep learning. Deep
learning is a term describing a broad class of statistical or machine learning models. Like all
statistical or machine learning models, deep learning models take in examples as input and out-
put structured predictions. These predictions are determined by the architecture or structure
of the model and its parameter values. The models are then trained using gradient information

resulting from the output of the model and the loss, or risk.



We can loosely define deep learning models as neural networks with many layers. A neural
network is a model which modifies the input by a weight and then performs a summation, in
other words, a linear combination, which we will call the linear layer. This linear combina-
tion then becomes input to an activation function, which controls the amplitude of the output.
These non-linear activation functions tend to be functions such as sigmoid, tanh, or the rec-
tified linear unit (ReLU). The reasoning behind the non-linear activation functions is so that
the composition of a linear layer and the activation function produces an expressive function.
Deep learning models are essentially neural networks with many repetitions of this linear layer
+ activation function setup with varying weight dimensions and choice of activation function.
Deep learning occurs when we scale this functional framework to a massive scale, meaning that
our layer weights become quite large and we use a substantial amount of layers. Of course this
is a very coarse description of deep learning models and many do not exactly follow this pattern,

but it is a sufficient description to achieve the understanding needed for Bayesian deep learning.
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Figure 1: Two Layer Neural Network [2] (Normalization layer is also an activation function).

I will briefly go over two types of deep learning models since they will be mentioned in future
sections. These models are the multi-layer preceptron (MLP) and the convolutional neural net-
work (CNN). The MLP is exactly how we described our deep learning models, many layers of
linear combinations with non-linear activation functions. Theoretical results show that MLPs

are able to represent any possible mathematical function even when they only consist of a small



amount of layers. Thus, they are very expressive, but they also do not have any particular
biases build into them, thus they are seen as being generalist. The second model, the CNN, is a
bit more complex, so I will discuss it at a high level. It follows the same idea as the MLP, many
consecutive layers, however instead of a linear layer, it uses a convolutional layer. This convolu-
tional layer consists of filters that slide along input features and provide translation equivariant
outputs. In other words, these are less expressive than MLPs due to the constraining feature
of the convolutional layer. However, they have specific biases that make them very powerful in

particular tasks, especially in visual imagery.

Deep learning models are very powerful and popular, but also quite mysterious. Since they
are essentially a massive function composition, with many non-linearities, they are extremely
non-convex, so we have no global optimal parameter settings. In addition, they are at such a
scale that it is impossible to completely analyze the training of these non-convex models using
today’s tools. Even though they are seen as black-boxes, they are heavily used in Computer

Vision, Natural Language Processing, and many other fields.

3 A Perspective on Generalization

In this section we will examine how systems that learn, in the setting of machine or statistical

learning, are able to generalize to new examples that they have not previously seen.

First, let us define some key terms that will help us understand the idea of generalization. “The
ability for a system to learn is determined by its support (which solutions are a priori possible)
and inductive biases (which solutions are a priori likely). The evidence, or marginal likelihood,
p(DIM) = [ p(D|IM,w)p(w)dw, is the probability we would generate a dataset if we were to
randomly sample from the prior over functions p(f(z)) induced by a prior over parameters
p(w).” We can think of this in another way: We first choose a model/hypothesis class, and
marginalize through all possible parameter settings of that model class with their respective
prior probabilities. “The support is the range of datasets for which p(D|M) > 0.” Inductive
biases are “the relative prior probabilities of different datasets — the distribution of support

given by p(D|M).” Another way of thinking about inductive biases is given our model class



and its support over the datasets, where is the probability mass located, or distributed, it is a
statement about the distribution. Overall, it is important to understand that generalization, as
portrayed here, is a two-dimensional concept, it relies on both the support and the inductive
biases. Additionally, deep learning models tend to generalize well because they have a large
support and are able to be tweaked to develop well-calibrated inductive biases (e.g. CNN), thus

they fit many datasets.

We will now discuss in more detail why exactly these deep learning models are able to fit many

datasets of interest, and why a Bayesian approach may be desirable.
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Figure 2: Evidence over image datasets

In figure 2, we have several computer vision image datasets on the x-axis and the evidence on
the y-axis. MNIST is a dataset of 28 pixels by 28 pixels handwritten digits, numbers 0 through
9. CIFAR-10 is a dataset of 32 pixels by 32 pixels real-world objects, such as cats, dogs, horses,
ships, etc. Corrupted CIFAR-10 is the CIFAR-10 dataset but corrupted with random noise,

so it represents an unnatural image dataset, since these corrupted images do not occur in world.



Here the blue curve could represents a linear function. It has a truncated support and cannot
even represent a quadratic function. Given that the marginal likelihood must marginalize over

the datasets D, the linear model assigns a large amount of mass to the datasets it does support.

The red-purple curve could represent a large fully-connected MLP. This model has very high
flexibility, but has no preference for certain datasets, distributing its support too evenly. This

causes it not to be particularly compelling for many image datasets.

The green curve could represent a convolutional neural network (CNN), which “represents a
compelling specification of support and inductive biases for image recognition: this model has
the flexibility to represent many solutions, but its structural properties provide particularly

good support for many image problems.”

We will now examine another figure depicting how these model classes’ posteriors contract the

initial prior hypothesis space.
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Figure 3: Collapse of probability

The convolutional neural network (CNN) representing the green diagram shows the benefit of
having a large hypothesis space, combined with well-calibrated inductive biases, since the model
contracts to the real solution. The blue diagram representing a linear model class is a simple
model will have a posterior that contracts around an erroneous solution if it is not contained
in the hypothesis space. Lastly, the red-purple model has a wide support, but does not con-

tract around a good solution because its support is too evenly distributed, it does not have



well-calibrated inductive biases.

As we know, the marginal likelihood is used on many places such as Bayesian hypothesis testing,
model comparison, and hyperparameter tuning, and in Bayes factors to select between models.
Work has been done by Rasmussen & Ghahramani (2001) [15], which reasons that the marginal
likelihood can favour large flexible models, as long as these models correspond to a reasonable
distribution over functions. Also it is important not to confuse the flexibility of a model with
the complezity of a model class. We can have deep learning models with large support, making

them quite flexible, but often also have inductive biases towards simple solutions.

4 Bayesian Model Average

In the learning setting, the goal of a Bayesian approach is computing the Bayesian model average

(BMA):

p(vl2.D) = [ p(olo, wip(wlD)du
“The outputs are y (e.g., regression values, class labels, ...), indexed by inputs x (e.g. spatial
locations, images, ... ), the weights (or parameters) of the neural network f(x;w) are w, and D

are the data.”

Instead of using a single setting of parameters, we use all possible parameter settings weighed
by their posterior probabilities. Think of each setting of w as a different model, and that the
Bayesian model average is an average of infinitely many models weighted by their posterior
probabilities. Note that asymptotically, where we have infinite data, p(w|D) will collapse onto

a point mass.

5 Classical vs. Bayesian Approach

In the classic training setting we learn through optimization. This means we aim to find the a
single model that minimizes or maximizes our objective of interest. This is typically the single
setting of parameters w that maximizes the posterior distribution p(w|D). This model is then

used to predict our outputs y given an input x.



The Bayesian approach is based on the process of marginalization instead of optimization.
As stated before, instead of using one singular model, we use the Bayesian model average to
weigh all possible parameter settings using their posterior probabilities through integration or

marginalization. This achieves our desired distribution p(y|z, D).

We can also re-frame classical training in the lens of the Bayesian approach by showing how clas-
sical training is represented in the BMA. Classical training can be seen as using p(w|D) = é(w =
w) where @ = argmax,p(w|D). This leads to the standard predictive distribution p(y|z;w).
Note that this w is equivalent to the maximum a posteriori probability (MAP) estimate, or
wmap. If the actual posterior is not unimodal with a sharp peak, then the delta function is
not a reasonable approximation. Instead we want to consider multiples modes of the posterior,

which is exactly what we want to accomplish in the Bayesian setting.

Overall, the idea behind Bayesian Deep Learning can be simply stated as using the Bayesian

model average (BMA) for deep learning models.

6 Bayesian Deep Learning

6.1 The case for Bayesian Deep Learning

Neural networks, or deep learning models, tend to be underspecified by the data. In other
words, deep learning models have many more parameters than data. This leads to diffuse
likelihoods p(D|w), which do not favor any one set of parameters. In addition, in many deep
learning problems, there are many high performing models corresponding to different settings
of parameters [/, 8]. This is exactly when marginalization will make the biggest difference for
accuracy and calibration because we will have an ensemble containing many different but high

performing models.

In most deep learning training setups, the loss or risk that we use tends to be the negative

log posterior density — logp(w|D). Many studies have shown that flat regions of low loss are



associated with good generalization, visualized in figure 4. Additionally, these flat regions that
generalize well tend to be diverse, which means that they correspond to many distinct high

performing models [7]. To make matters even better, Huang et al. (2019) [6] describes deep

learning models as having a blessing of dimensionality. This is because these flat, distinct
regions of the loss that that correspond to better generalization take up much more volume in

high dimensions. Thus, they will dominate in forming the predictive distribution in a Bayesian

model average. These specific properties of deep learning models make using the BMA very

appealing.
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Figure 4: Generalization of solution types [9]

An additional reason why the Bayesian approach is appealing is that averaging the predictions
of multiple, accurate models that disagree in some cases should lead to improved accuracy. As
we discussed before in the classical vs. Bayesian section, the Bayesian approach will only provide
benefits when it comes to accuracy because the classical approach is a very simplified version
of the Bayesian approach. Calibration is also an important aspect when it comes to modeling.

It has been noticed that modern deep learning models are often miscalibrated in the sense that

their predictions are typically overconfident (Guo et al., 2017 [5]). This has been empirically

shown in the several studies as well [10, 8]. This is made worse by the fact that these models

are point predictions from optimization, clearly a marginalization approach should improve the

calibration of these solutions.



Another strong case for Bayesian deep learning is its ability for uncertainty representation.
Classical training outputs a single model without any representation of uncertainty. However,
the BMA is a statement in probability. Thus, not only do we get additional explainability due
to the probabilistic underpinnings, but we are able to examine the spread of the distributions,

specifically the predictive distribution, p(y|z, D).

All of these reasons give strong justifications for Bayesian deep learning. However, even if there
are many potential theoretical benefits of using the Bayesian approach in deep learning, it must

have strong empirical results for it to be considered over standard deep learning.

A potential roadblock for Bayesian deep learning comes up in its core property: the Bayesian
model average. Theoretically the BMA is very appealing and is the leading justification behind
making the case for Bayesian deep learning, but when it comes to computing it in practice, we
run into a large issue, can we actually compute the Bayesian model average for these massive

deep learning models?

6.2 Approximate Inference

Recall the Bayesian Model Average (BMA):

p(ylz, D) = / p(ylz, w)p(w|D)duw

In deep learning, we have a very non-convex posterior landscape and a very high dimensional
parameter space. This leads to a BMA that is not analytic, so we have to find a way to get

around this. A straightforward solution is through Simple Monte Carlo approximation:
pylz, D) ~ 5 Zp yle,w;),  w; ~ q(w|D)
Here w; are samples from a posterior ¢(w|D) that approximates p(w|D).

When using this Simple Monte Carlo approximation method, the main question at hand is what

do we use for our approximate posterior, g(w|D)? The first approach is using so-called deter-



ministic methods. Here we approximate p(w|D) with a parameterized approximate posterior

q(w|D, ) that is usually nice, such as a Gaussian.

Some examples are Laplace (e.g., MacKay, 1995 [12]), Expectation Propogation (Minka, 2001
[14]), Variational, Standard Training. A concrete example of a Variational solution is to model
q(w|D,0) as a Gaussian with 6 parameterizing the mean. Then we use a Variational in-
ference method to find the 6 that minimizes the Kullback—Leibler (KL) divergence between
our approximate posterior g(w|D,#) and our exact posterior p(w|D), in other words we find
argmingKCL(¢||p). It is also important to note that classical training is a variant of these deter-
ministic methods. If we set our approximate posterior g(w|D) = §(w = wyap), then this results
in the exact form we discussed in the Classical vs. Bayesian Approach section. In a later section

we will dive into one of these deterministic models that was introduced in our main reference [1].

Another approach is through Markov-chain Monte-carlo (MCMC). Here we create a Markov
chain of approximate samples from p(w|D). Noting that even though these are approximate sam-
ples, asymptotically they are exact representations of p(w|D). Some examples are Metropolis-
Hastings, Hamiltonian Monte Carlo (HMC), Stochastic gradient HMC, and Stochastic gradi-
ent Langevin dynamics. In the Bayesian Deep Learning setting these MCMC algorithms are
gradient-based and “generate posterior samples iteratively using the gradient of loglikelihood...
Since calculating likelihood on large datasets is expensive, people use stochastic gradients in

place of full gradients.” [11]

The momentum based methods tend to work as follows: the general algorithmic framework of
these methods maintain two discrete-time sequences for the time-step ¢, p; and 6;, and then
returns the samples {61,609, ...,07} as an approximation to our distribution of interest p(6|D).

The specifics of the framework are as follows:

piy1 = (1 — Dh)p; — hV; 4+ V2Dh - &

Orr1 =0 + hpeta
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“f; is the parameter that we wish to sample and p; is an auxiliary variable conventionally called
the ‘momentum’. Here h is step size, D is a constant independent of 6 and p, & ~ N(0, I;) and
V, is a mini-batch approximation of the full gradient [or the full gradient of the loglikelihood].”
[11] Here we are construction samples by using the information from the previous iteration, the
previous gradient of the loglieklihood, some scaled noise, and a momentum quantity, which is

all scaled by the step size h.

A specific MCMC based technique designed specifically for Bayesian Deep Learning is described
in the following paper: Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning [15].
Their method, cyclical stochastic gradient (SG)-MCMC, provides a good example of using
MCMC to approximate samples from the posterior, p(w|D). Their main contribution is re-
placing the traditional decreasing stepsize schedule in stochastic gradient (SG)-MCMC with
a cyclically changing one, which they claim improves learning complex high dimensional and
multimodal distributions.

To go into more detail, there algorithm generates samples from multiple modes of a posterior
distribution by running the cyclical step size schedule for many periods. They consider each
step size cycle as a way of exploring a different part of the target posterior p(0|D). As discussed
previously, this is particularly compelling for Bayesian deep learning because it involves rich

multimodal parameter posteriors with multiple distinct, strong solutions.

11
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Figure 5: Cyclical stepsize [18]

We can see in the above figure 5 that there are two main periods for every cycle: exploration

and sampling.

e Exploration: “when the stepsize is large (dashed red curves), we consider this stage as
an effective burn-in mechanism, encouraging the sampler to take large moves and leave

the local mode using the stochastic gradient.” [18]

e Sampling: “when the stepsize is small (solid red curves), the sampler explores one local

mode. We collect samples for local distribution estimation during this stage.” [15]

The following is the pseudo-code for the algorithm:

12



Algorithm 1 Cyclical SG-MCMC.

Input: The initial stepsize a, number of cycles M,
number of training iterations K and the proportion
of exploration stage /3.
fork=1:K do

« + oy according to Eq equation 1.

. mod (k—1,[K/M1)
if TR / < 3 then

% Exploration stage
0+ 6 — aVUL(9)
else
% Sampling stage
Collect samples using SG-MCMC methods
Output: Samples {6}

Figure 6: SG-MCMC psuedocode [18]

Here U, (0) is equivalent to our V; from before, a mini-batch approximation of the full gradient
or the full gradient of the loglikelihood. The step-size « is chosen using a cyclical formula,
its full details not discussed here. The pseudo-code follows the diagram that was previously

described; alternating between the exploration and sampling stage in a cyclical pattern.

We have finished going over some of the common approaches to approximate our posterior and
ultimately approximate the BMA. However, a key piece to note is that when performing our
approximate inference of the BMA, our main goal is to accurately compute the predictive dis-
tribution p(y|z, D), rather than find a generally accurate representation of the posterior. In
particular, we mostly care about representing the posterior in regions that will make the great-
est contributions to the BMA integral. The main papers expands on this topic in good detail:
“In terms of efficiently computing the predictive distribution, we do not necessarily want to
place point masses at locations given by samples from the posterior. For example, functional
diversity is important for a good approximation to the BMA integral, because we are summing
together terms of the form p(y|z;w); if two settings of the weights w; and w; each provide high

likelihood (and consequently high posterior density), but give rise to similar functions f(x;w;),

13



f(z;wj), then they will be largely redundant in the model average, and the second setting of
parameters will not contribute much to estimating the BMA integral for the unconditional pre-

dictive distribution.” [1]

Ultimately, since the BMA is not analytic, we want to best estimate the BMA integral given
computational constraints. Thus, we will always have a trade-off between the quality of the

approximation and the compute and time required.

7 SWAG and Multi-SWAG

In this section I will talk about the method of computing the BMA in the main paper that the
report is based on [1]. There approach, Multi-SWAG, falls under the deterministic methods

discussed in the previous section.

7.1 SWAG

To discuss the overall method, Multi-SWAG, we first must go over the SWAG method [13].
SWAG stands for Stochastic Weight Averaging Gaussian, and it is claimed to be a “simple and
scalable method for Bayesian deep learning.” [13] The main idea behind the method is to use
iterations from stochastic gradient descent (SGD) to fit a low-rank diagonal Gaussian distribu-
tion. They reason that by using this approach, they capture the geometry of the posterior in

the subspace of SGD.

The algorithm involves a good amount of details. To avoid getting bogged down in details, the
discussion will be a high-level overview, aiming for a solid general understanding. Stochastic

Weight Averaging Gaussian applied to the BMA problem can be described as follows:

1. Using recent developed theory, SGD with a constant learning rate is approximately sam-

pling from a Gaussian distribution.
2. Compute the first two moments of SGD trajectory.

3. Use these moments to construct a Gaussian approximation in weight space.

14



4. Sample from this Gaussian distribution, pass samples through predictive distribution, and

form a Bayesian model average. [10]

p(y«|D) = Z p(y<|wj),  wj~qw[D), ¢q(wD)=N(w,K)

w =

Sows K= (o S0 n = ) — W)+ o 3 diag(wi — W)’

t t t

1
T

Figure 7: SWAG formulation [16]

The above equations show precisely how we construct our approximate posterior g(w|D) by
modeling it as a Gaussian distribution using the first two moments of the SGD trajectory as

the building blocks of its mean and variance.

One caveat to this method is that the initial iterations of SGD tend to be fairly poor since we
are quite far from any form of convergence, which is especially true in deep learning training.
Thus, instead of using the moments of the SGD trajectory from the very beginning, we first
have a pre-training phase which makes our SGD moments much more representative. This
can be seen as a burn-in phase, and in our case for deep learning, it takes the majority of the
training time. Additionally, the step size, or learning rate, for SGD starts fairly large and then
is decreased so that we can achieve convergence in a fair amount of epochs (iterations). This is

illustrated in the following figure:
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Figure 8: SWAG sampling [13]

7.2 Multi-SWAG

Multi-SWAG forms a Gaussian mixture posterior from multiple independent SWAG solutions.
Each Gaussian is centered over a different basis of attraction. A basin of attraction is a “basin”
or valley in our posterior landscape that typically represents a local minimum. As we discussed
before there usually are multiple solutions in flat regions of the posterior and all these solutions
tend to lead to better generalization. Thus, we want our posterior approximations to use mul-
tiple basins of attraction to result in more functional diversity. Due to this, Multi-SWAG gives
more promise than Bayesian approaches that focus on approximating the posterior within single
basin of attraction, such as plain SWAG. In essence, Multi-SWAG “incorporates multiple basins
of attraction in the model average, but it additionally marginalizes within basins of attraction

for a better approximation to the BMA.” [1]

We now will briefly discuss the performance of Multi-SWAG compared to two other methods.
These methods are a Variational Inference method similar to what we discussed before, and
another popular method, Deep Ensembles [10]. Deep ensembles is a popular, recent method
for producing accurate and well-calibrated predictive distributions. It is based on retraining a
neural network model multiple times, taking advantage of the stochastic training nature, and

then averaging the corresponding models. This creates an ensemble of deep learning models

16



that tends to incorporates multiple basins of attraction in the model average just like Multi-
SWAG. However, a key difference is that Deep Ensembles do not marginalize within basins of

attraction, whereas Multi-SWAG does.

p(w|D)
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Figure 9: Approximating the BMA

The above figure 9 shows how Multi-SWAG and Deep Ensembles are able to represent different
modes of our posterior, unlike the Variational method. Notice how even though many of the
different modes, or basins, of the posterior have approximately the same shape and value they
have drastically different likelihood, p(y|w), shapes and values. Due to this, it is not always
best to take the maximum value of our posterior basins as is shown in the likelihood plot
but instead a marginalization within the basin, demonstration a strength of Multi-SWAG over
Deep Ensembles. The last plot displays the distance between our approximation ¢ and the true
posterior p, given that we have only sampled from the dark green marker, w. It shows that
there is more to gain when we explore other basins, than continuing to explore the same basin

due to how small the distance is near w.
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8 Application of these methods

So far this report has focused on describing the core principles of Bayesian Deep Learning. We
have gone over how it revolves around the Bayesian Model Average, why using the Bayesian
framework makes sense for deep learning, and some methods on how the BMA is computed in
practice. However, we are missing a strong example of Bayesian Deep Learning in action. We
can talk all about the core ideas and common approaches, but it would be interesting to see a
concrete example of these techniques. Therefore, I will now briefly discuss a fascinating, recent

application of Bayesian Deep Learning in planetary science.

The topic at hand is the dynamical system describing planets orbiting a star, or a planetary
system. The main objective is predicting how these chaotic systems will behave in the future,
especially “what systems go unstable and experience a collision or ejection, and at what time
will this occur?” [3] This problem has been tackled for over three centuries, but no closed-form

solution exists for predicting the instability of these planetary systems.

It turns out that after many experiments with a multitude of different models, specifically
designed deep learning models perform the best in this setting due to their well-calibrated in-
ductive biases and large support. The main reason behind this observation, is that the deep
learning models they use show similar algorithmic structure to the physical real-world model.
However, classical training methods run into a problem, since this is a chaotic system there is
a need for a distribution of instability times, not just one point. This is where Bayesian Deep

Learning comes to the rescue.

They claim that “Bayesian deep learning allows us to marginalize the parameters of our neu-
ral networks, giving us the ability to account for uncertainty due to extrapolation outside the
training set.” [3] Specifically they use the Multi-SWAG method to fit 30 different modes, or

basins of attraction, of the parameter space.

They utilize a three planet planetary system train and test datasets for their experiments. The

experiments show that their Multi-SWAG model is two orders of magnitude more accurate than
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existing analytic estimators. Additionally, the model gives a computational speedup over N-
body integrations of up to 10° times, and all the estimates are over distributions. This means

that they are able to calculate error bars, which represent the uncertainty in the model’s pre-

dictions.
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Figure 10: Instability predictions [3]

This figure 10 shows the Bayesian Deep Learning method (ours), performs much better than
the alternative methods, Modifed T20, a classical machine learning approach, and Petit+20, an

analytical method, in matching the true values.

They claim that this is quite an important development because “this enables a broad range
of applications: using stability constraints to rule out unphysical configurations and constrain
orbital parameters, and for developing efficient terrestrial planet formation models.” [3] Overall,
this shows a real-world application of Bayesian Deep Learning, and the authors benefit greatly

from its properties that we previously discussed.

9 Downsides of Bayesian Deep Learning

It is important to also note that Bayesian deep learning has some clear downsides, and cannot
be considered strictly better than classical deep learning. For one, there is an obvious increase

in the computational cost. The classical approach only optimizes for one model, while the
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Bayesian approach marginalizes over many, thus it is clear that the Bayesian approach will have
higher computational cost. This is made worse by the fact that deep learning models already
take a long time to train, so it may not be feasible in certain environments. Another issue with
Bayesian deep learning is found at its core: the computational intractability of the Bayesian
model average. We can produce all the theory we want about the strength of the Bayesian
model average in regards to deep learning model classes, but the reality is that we almost al-
ways have to approximate the BMA when working with deep learning. The quality and cost
of these approximations decide how well our predictive distribution will be, which can be a
big question mark. Lastly, the Bayesian framework introduces a substantial amount of moving
parts to deep learning. As just mentioned, we have to decide what is the best approximate
inference method for our problem at hand, and the Bayesian framework introduces many ad-
ditional hyperparameters (parameters chosen by the user) that are introduced in the Bayesian
setting. These hyperparameters are not learned, can be quite difficult to set, and may greatly

vary based on the problem at hand.

I wanted to close by outlining the most notable downsides of Bayesian deep learning to give
some perspective on why this approach may not be as popular in the overall deep learning
community; classical deep learning is still the go-to method when it comes to working with
deep networks. However, even though there are several downsides concerning Bayesian deep
learning, ongoing work is constantly being done to alleviate these downsides, and as we have

shown earlier, Bayesian deep learning has its wealth of positives.
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