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Learning Representations

* Notall data is numerical but machine learning needs

numerical representations!
* For diftferent data types, want to learn meaningtful
representations that are:
— Model parsable
— Efhicient / compact

— Informative for downstream tasks
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Making Learning Easier
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Unsupervised Representation Learning

e Given a set of unlabeled data, can we learn about the
structure of said data?

— Clustering

— Data compression / Dimensionality reduction

* Self-supervised learning

— Branch of unsupervised learning that uses a created pretext
task to learn representations of the data
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Self-supervised Learning (SSL)

e Pretext Task

— Pre-designed tasks for networks to solve.

— Learning the objective function produces useful features.

e Downstream Task

— Applications of interest where the pretrained model can be
utilized.

— Greatly benefit from the pretrained models when training
data are scarce.



Cornell University

Self-supervised Learning (SSL)

* RotNet (Gidaris et al. 2018)
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Why self-supervised learning in vision?
* Images are in a continuous, high-dimensional space.

 No need for labeled data.

* Longtail problem.

— Most labeled images correspond to very few label classes.
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Common workflow

1.

Pretext task used to train
model.
a. Unlabeled images.

Extract representation
network.

Representation network

used for downstream tasks.

Self-supervised Pretext Task Training

Unlabeled Dataset

Knowledge Transfer

Supervised Downstream Task Training
Labeled Dataset

= Downstream
Task
m

Self-supervised Visual Feature Learning with Deep Neural Networks: A Surve:



https://arxiv.org/abs/1902.06162
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Self-supervised Learning in Computer Vision

Contrastive Learning

— Learn an embedding space where
* Similar (positive) sample pairs stay close to each other.

* Dissimilar (negative) sample pairs are far apart.

Positives Negatives
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https://arxiv.org/abs/2004.11362
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Self-supervised Learning in Computer Vision

e (Contrastive Learning

— Learn an embedding space where
* Similar (positive) sample pairs stay close to each other.

* Dissimilar (negative) sample pairs are far apart.
— How to create positive and negative sample pairs?

— How do we create the embedding space with these desired
gsp
properties?
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Self-supervised Learning in Computer Vision

e SimCLR (Chen et al. 2020)

A Simple Framework for Contrastive Learning of Visual Representations

1

Ting Chen! Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton !
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Self-supervised Learning in Computer Vision

e SimCLR (Chen et al. 2020)
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[Limitations of SSL

* How to identify the important invariances and
symmetries?
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Limitations of SSL
* How to identify the important invariances and

symmetries?

* How do we learn representations that follow these
properties?
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[Limitations of SSL

* How to identify the important invariances and
symmetries?

* How do we learn representations that follow these
properties?

° Reeuires a large amount of pre—training iterations
(time inefhicient).

* Requires a large amount of data to learn good quality
representations (data inefhicient).
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[Limitations of SSL

* Requires a large amount of data to learn good quality
representations (data inefhicient).
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Improving the data efficiency of SSL

* Focus on reducing the amount of real data needed.
* Standard approach is to use data augmentation.

* Most SSL methods use simple random data
transformations:

— Flipping
— Cropping
— Color jittering

— Gaussian blur



Cornell University
R

Improving the data efficiency of SSL

* Idea: Generate fake images using our real training data
and use these fake images as data augmentation.
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* Goal: Be able to beat the performance on the original,
real dataset.
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Improving the data efficiency of SSL

* Idea: Generate fake images using our real training data
and use these fake images as data augmentation.

* Goal: Be able to beat the performance on the original,
real dataset.

* Requirement: A generative model that produces good
samples when trained with limited data.
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Problem Setup

1. Given an image dataset X without labels.

2. Train a generative model on X to generate
a set of fake images Z.

3. Use X U Z to pretrain a self-supervised
representation learner, such as SimCLR.
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Generating the fake data

* Generative Adversarial Networks (GAN)
* StyleGAN2

— Unconditional generative image modeling.

— Know for good image quality.
e Data-efhicient GANs

—  Framework that improves GAN training efﬁciency.

Random Noise » 
Discriminator .
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Evaluation

Linear EValuatiOn PrOtOCOI ] Self-supervised Pretext Task Training

Unlabeled Dataset
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Evaluation

Linear EValuatiOn PrOtOCOI ] Self-supervised Pretext Task Training
Unlabeled Dataset
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Evaluation

Linear EValuatiOn PrOtOCOI ] Self-supervised Pretext Task Training
Unlabeled Dataset
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Evaluation

Linear EValuatiOn PrOtOCOI ] Self-supervised Pretext Task Training
Unlabeled Dataset
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Evaluation

Linear Evaluation Protocol

1. Freeze the pretrained
representation network.

2. Attach alinear classifier on top
of the frozen representation.

Knowledge Transfer

3. Traln the hnear Cl&SSlﬁCI‘ USIHg Supervised Downstream Task Training
4 labeled train dataset. Labeled Dataset

4. Evaluate the classifier’s —
accuracy on a test dataset. 5 -Task
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Experimental Setup
e Datasets
— CIFAR-10/100 (+ STL-10 & Tiny ImageNet)

* SSL Algorithm
— SimCLR (+ MoCo)

e Generative Model
— Data Efficient StyleGAN2
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Experimental Setup
e Datasets
— CIFAR-10/100 (+ STL-10 & Tiny ImageNet)

* SSL Algorithm
— SimCLR (+ MoCo)

e Generative Model
— Data Efficient StyleGAN2
 Data Hyperparameters

— How many labeled samples (real)?

— How many generated samples (fake)?
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Learning Efficiency

* How quickly does this method train representations
that perform well?

* Fix the compute of both this method and the baseline
during pretraining, what do we observe in terms of
accuracy?

* In the low data regime, there is a possibility that this
method also improves the learning efficiency.
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Questions?

Thank you!



