

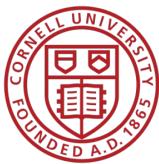
Improving the data efficiency in self-supervised representation learning

Roberto Halpin Gregorio

May 9, 2022

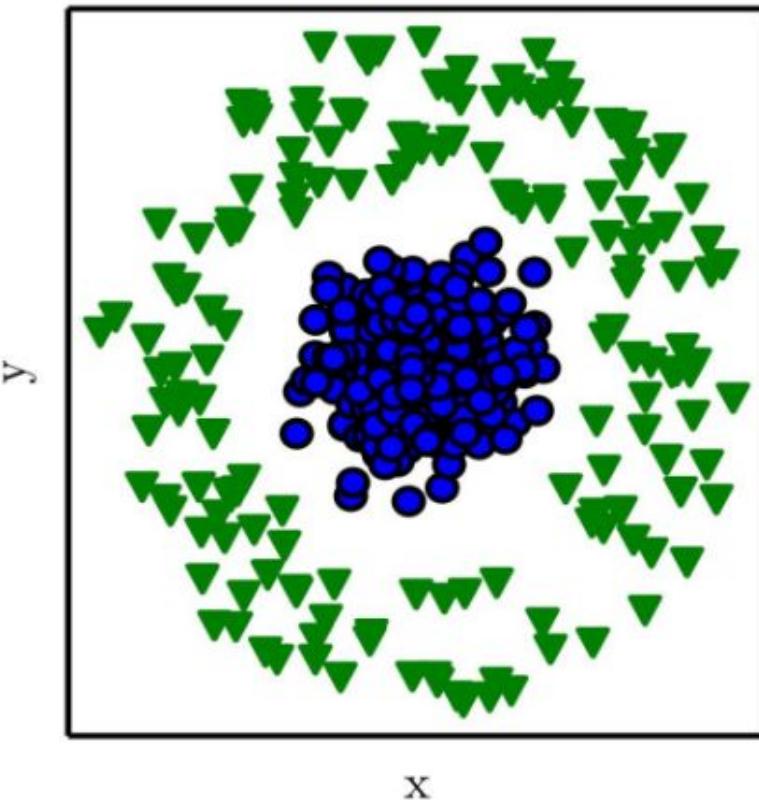
Learning Representations

- Not all data is numerical but machine learning needs numerical representations!
- For different data types, want to learn meaningful representations that are:
 - Model parsable
 - Efficient / compact
 - Informative for downstream tasks

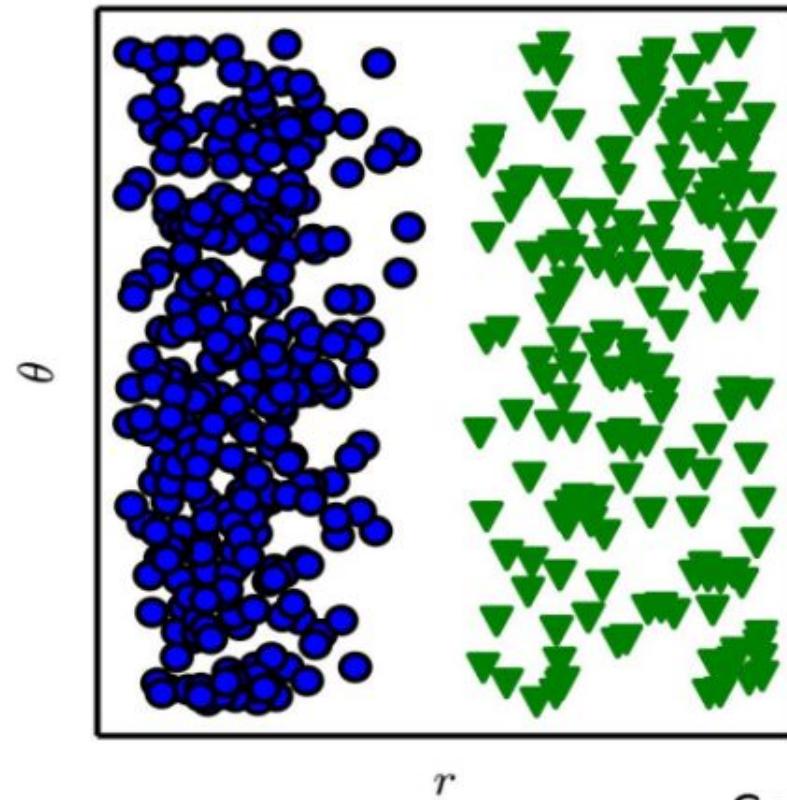


Making Learning Easier

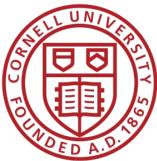
Cartesian coordinates



Polar coordinates

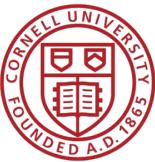


Goodfellow



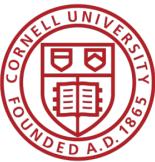
Unsupervised Representation Learning

- Given a set of unlabeled data, can we learn about the structure of said data?
 - Clustering
 - Data compression / Dimensionality reduction
- Self-supervised learning
 - Branch of unsupervised learning that uses a created **pretext task** to learn representations of the data



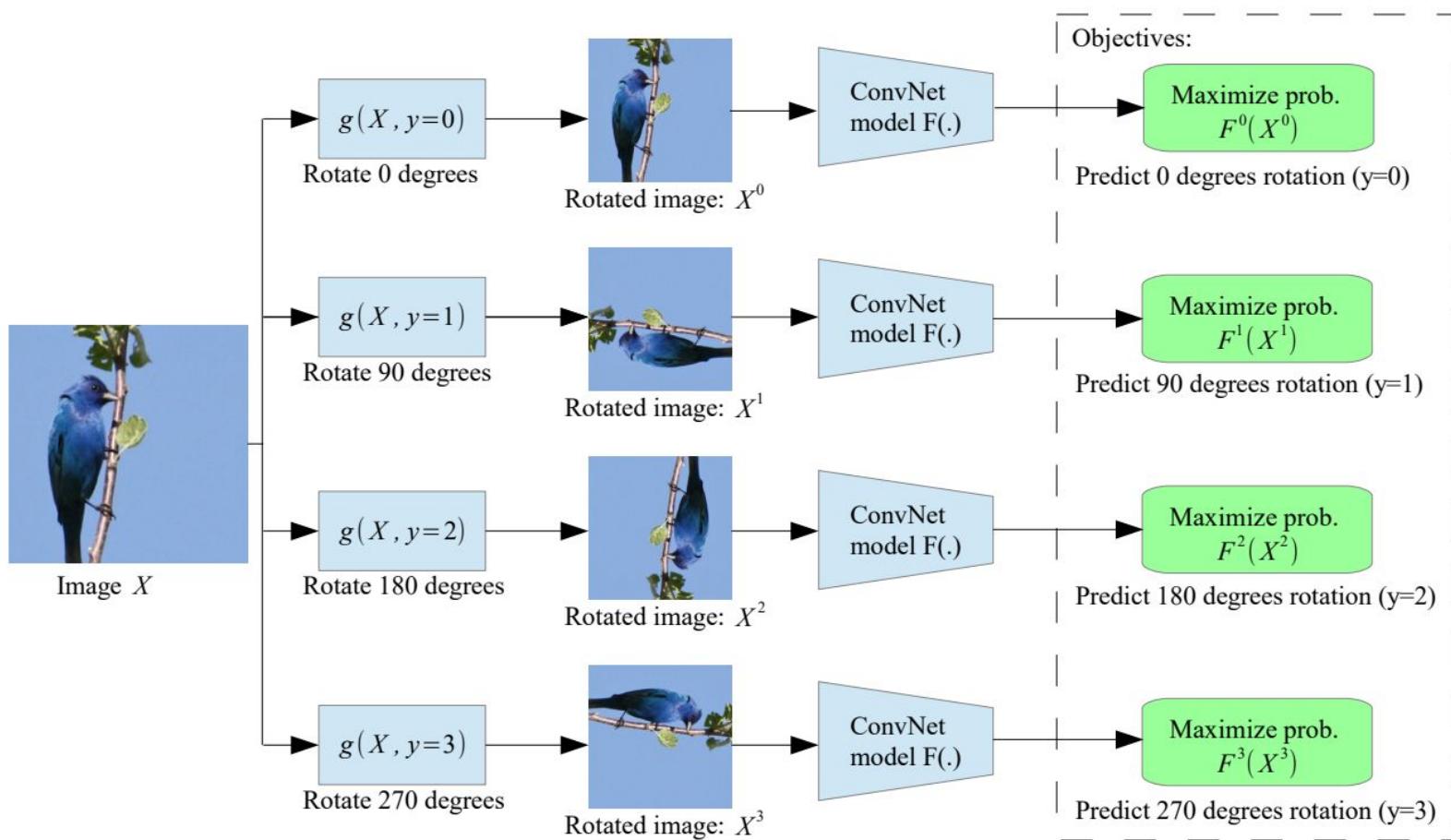
Self-supervised Learning (SSL)

- **Pretext Task**
 - Pre-designed tasks for networks to solve.
 - Learning the objective function produces useful features.
- **Downstream Task**
 - Applications of interest where the pretrained model can be utilized.
 - Greatly benefit from the pretrained models when training data are scarce.



Self-supervised Learning (SSL)

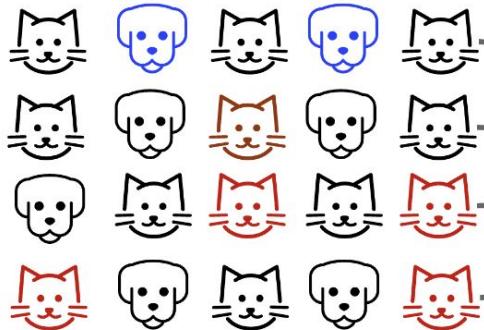
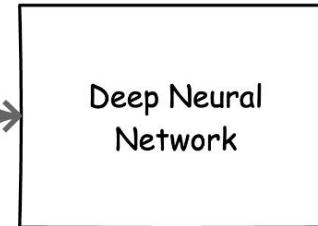
- **RotNet (Gidaris et al. 2018)**



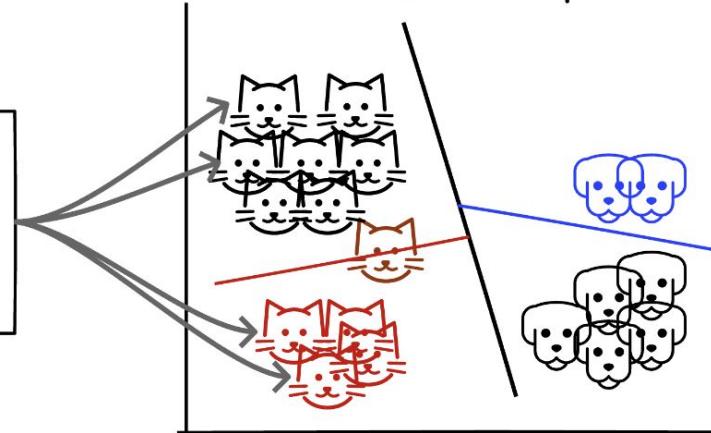
Why self-supervised learning in vision?

- Images are in a continuous, high-dimensional space.
- No need for labeled data.
- Longtail problem.
 - Most labeled images correspond to very few label classes.

Default Representation



"Good" Semantic Representation



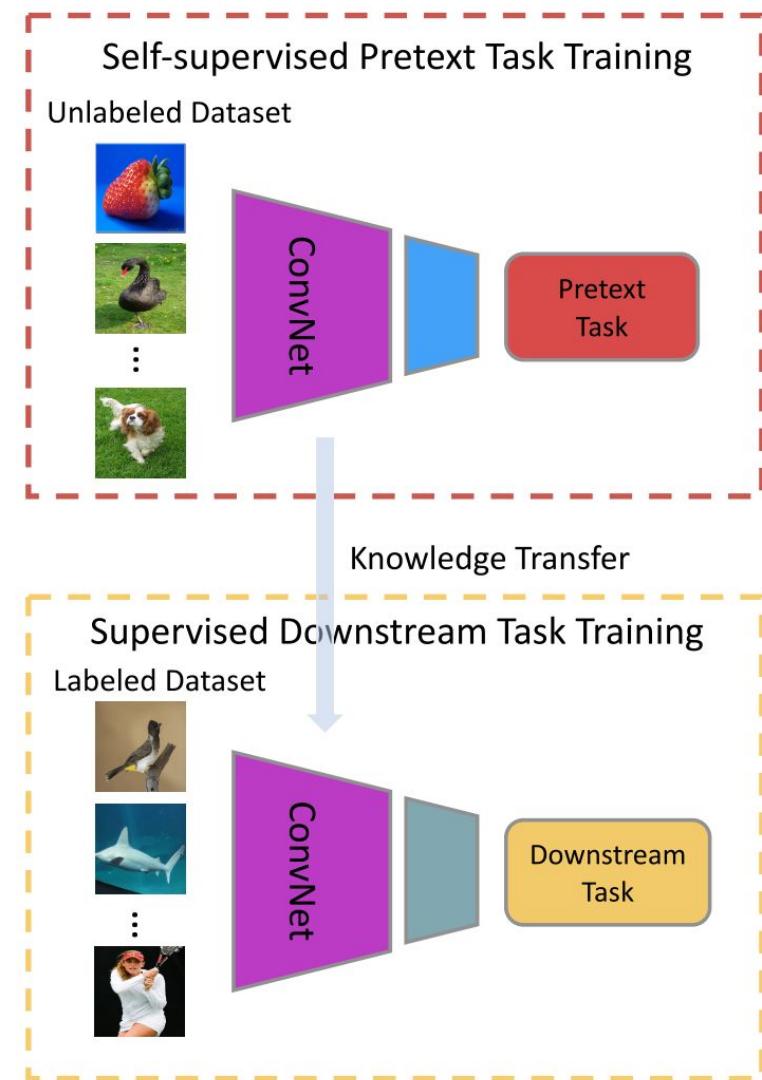
Cat by Martin LEBRETON, Dog by Serhii Smirnov from the Noun Project

Victor Dibia

Self-supervised Learning in Computer Vision

Common workflow

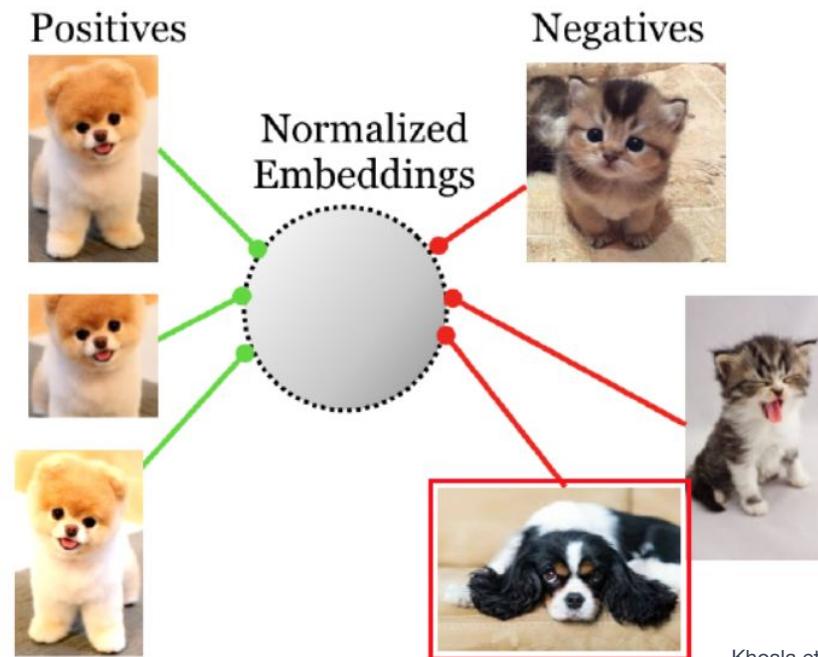
1. Pretext task used to train model.
 - a. Unlabeled images.
2. Extract representation network.
3. Representation network used for downstream tasks.



Self-supervised Learning in Computer Vision

- Contrastive Learning

- Learn an embedding space where
 - Similar (positive) sample pairs stay close to each other.
 - Dissimilar (negative) sample pairs are far apart.



[Khosla et al. 2004](#)

Self-supervised Learning in Computer Vision

- Contrastive Learning

- Learn an embedding space where
 - Similar (positive) sample pairs stay close to each other.
 - Dissimilar (negative) sample pairs are far apart.
- How to create positive and negative sample pairs?
- How do we create the embedding space with these desired properties?

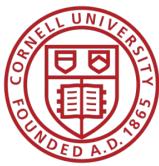


Self-supervised Learning in Computer Vision

- **SimCLR** (Chen et al. 2020)

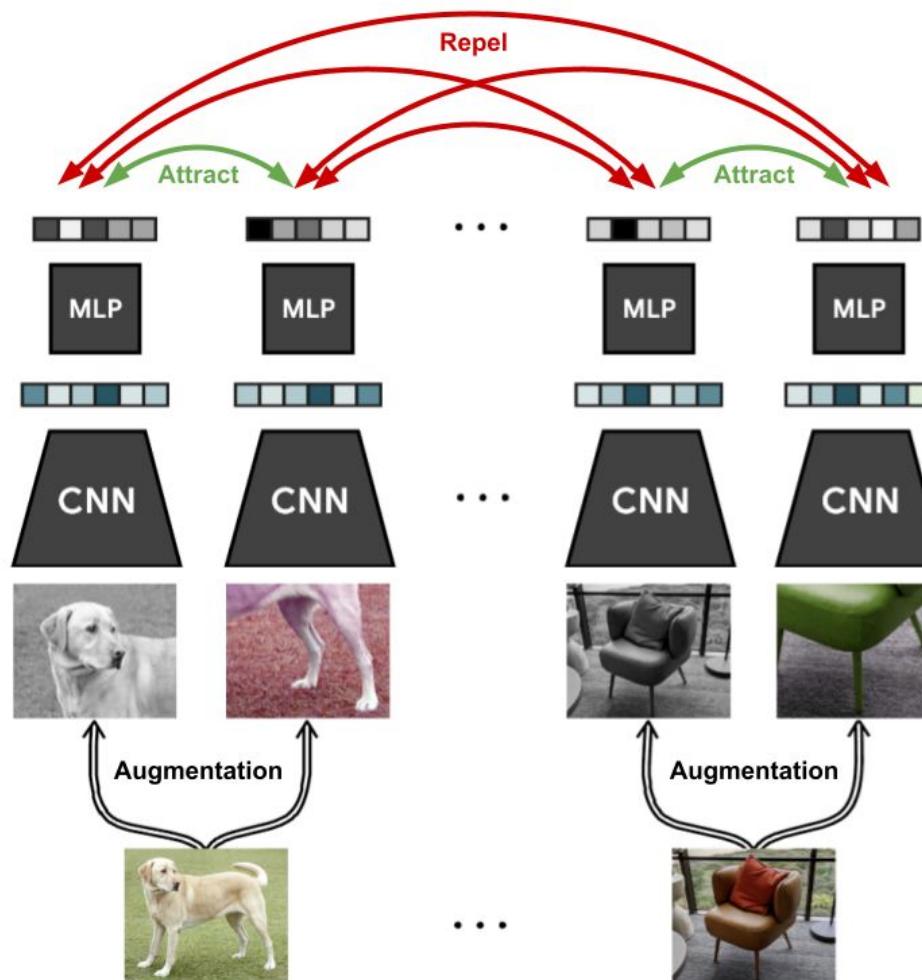
A Simple Framework for Contrastive Learning of Visual Representations

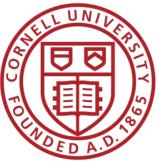
Ting Chen¹ Simon Kornblith¹ Mohammad Norouzi¹ Geoffrey Hinton¹



Self-supervised Learning in Computer Vision

- **SimCLR** (Chen et al. 2020)





Limitations of SSL

- How to identify the important invariances and symmetries?

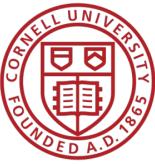


Limitations of SSL

- How to identify the important invariances and symmetries?
- How do we learn representations that follow these properties?

Limitations of SSL

- How to identify the important invariances and symmetries?
- How do we learn representations that follow these properties?
- Requires a large amount of pre-training iterations (time inefficient).

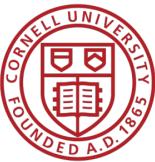


Limitations of SSL

- How to identify the important invariances and symmetries?
- How do we learn representations that follow these properties?
- Requires a large amount of pre-training iterations (time inefficient).
- Requires a large amount of data to learn good quality representations (data inefficient).

Limitations of SSL

- How to identify the important invariances and symmetries?
- How do we learn representations that follow these properties?
- Requires a large amount of pre-training iterations (time inefficient).
- Requires a large amount of data to learn good quality representations (data inefficient).

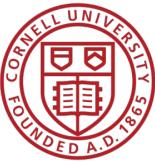


Improving the data efficiency of SSL

- Focus on reducing the amount of real data needed.
- Standard approach is to use data augmentation.
- Most SSL methods use simple random data transformations:
 - Flipping
 - Cropping
 - Color jittering
 - Gaussian blur

Improving the data efficiency of SSL

- **Idea:** Generate fake images using our real training data and use these fake images as data augmentation.

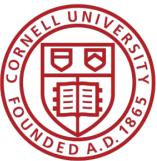


Improving the data efficiency of SSL

- **Idea:** Generate fake images using our real training data and use these fake images as data augmentation.
- **Goal:** Be able to beat the performance on the original, real dataset.

Improving the data efficiency of SSL

- **Idea:** Generate fake images using our real training data and use these fake images as data augmentation.
- **Goal:** Be able to beat the performance on the original, real dataset.
- **Requirement:** A generative model that produces *good* samples when trained with limited data.



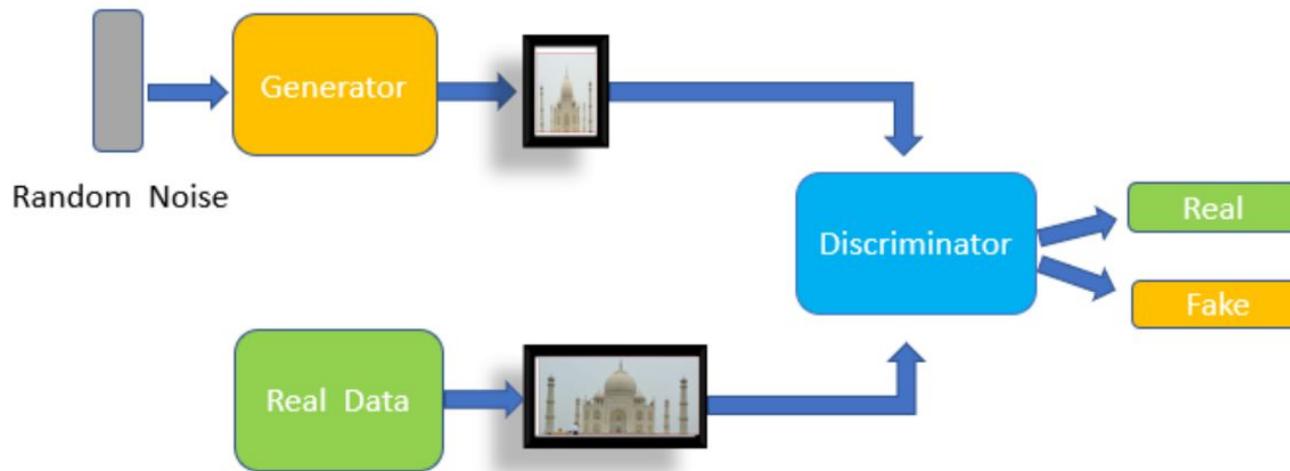
Problem Setup

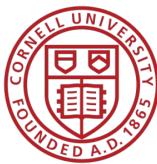
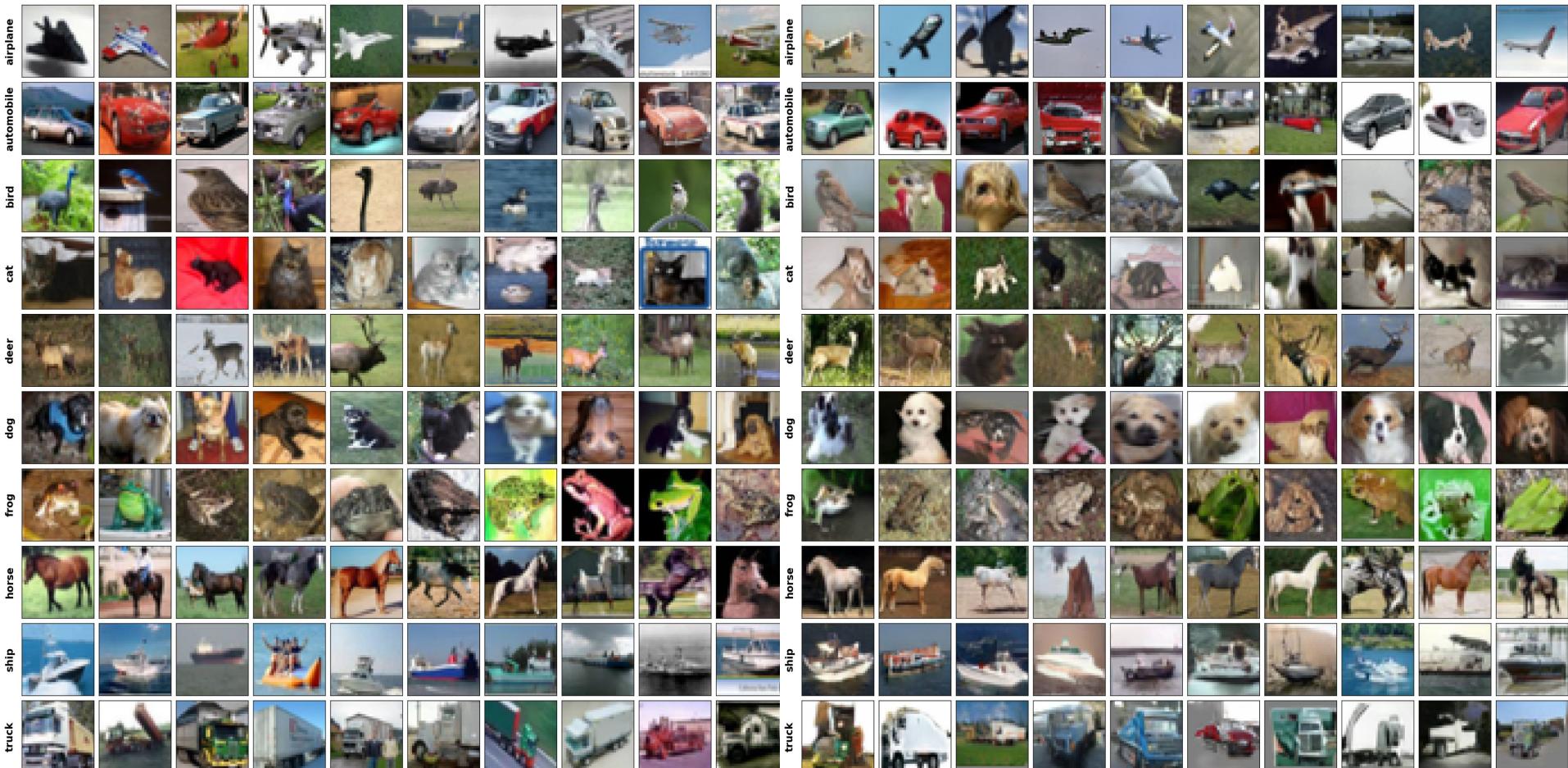
1. Given an image dataset X without labels.
2. Train a generative model on X to generate a set of fake images Z .
3. Use $X \cup Z$ to pretrain a self-supervised representation learner, such as SimCLR.



Generating the fake data

- Generative Adversarial Networks (GAN)
- StyleGAN2
 - Unconditional generative image modeling.
 - Known for good image quality.
- Data-efficient GANs
 - Framework that improves GAN training efficiency.



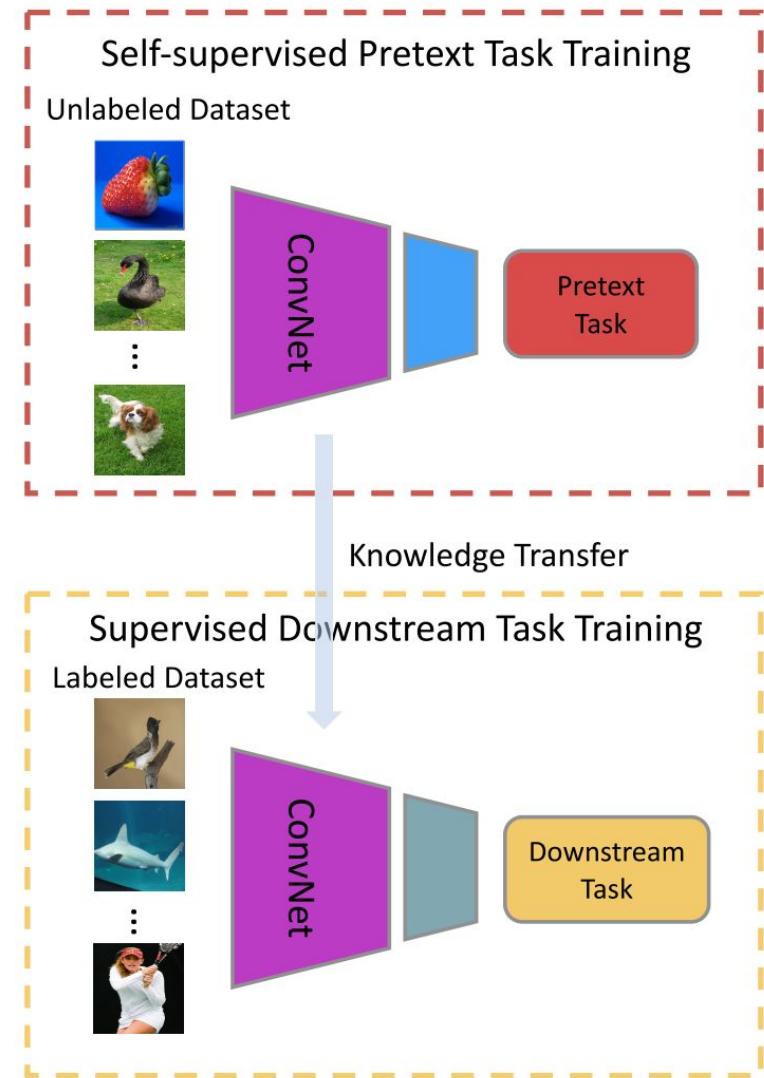


CIFAR-10 Real Images

CIFAR-10 Fake Images

Evaluation

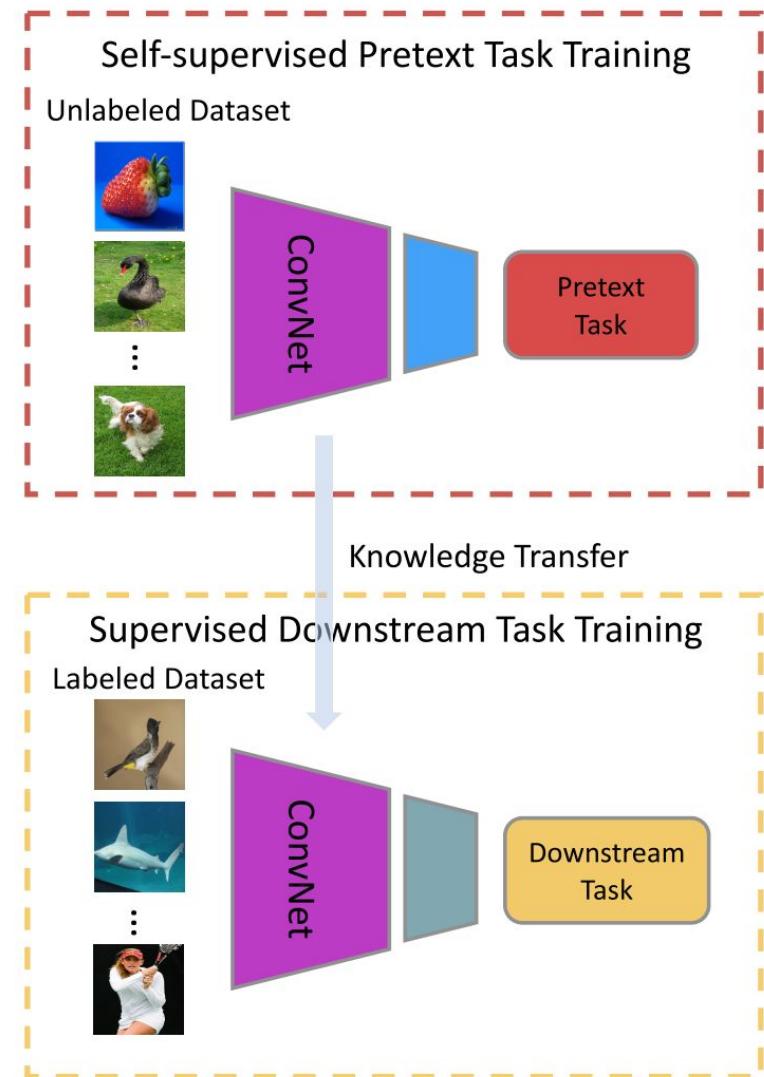
Linear Evaluation Protocol



Evaluation

Linear Evaluation Protocol

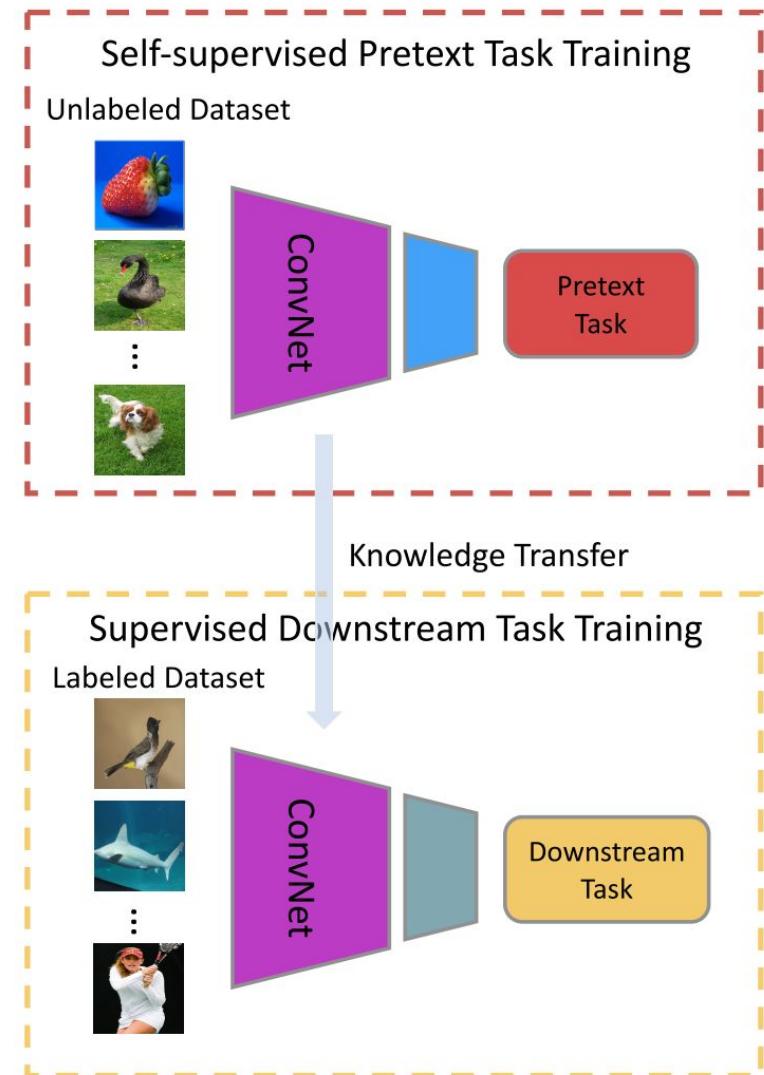
1. Freeze the pretrained representation network.



Evaluation

Linear Evaluation Protocol

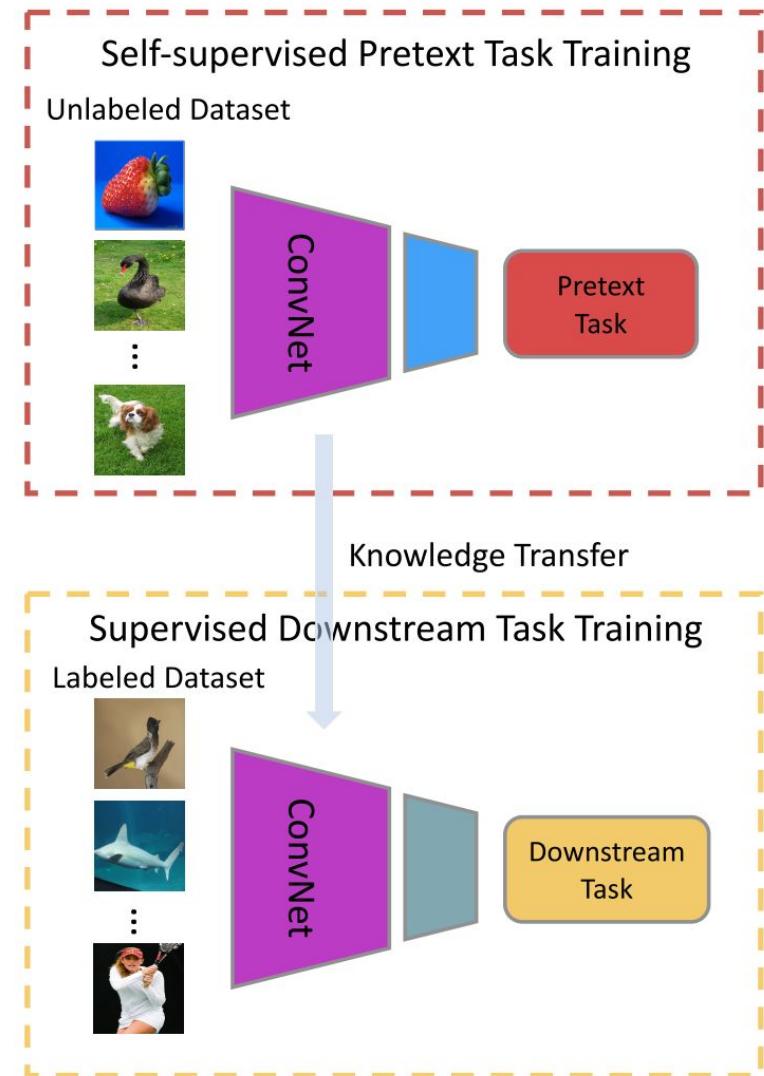
1. Freeze the pretrained representation network.
2. Attach a linear classifier on top of the frozen representation.



Evaluation

Linear Evaluation Protocol

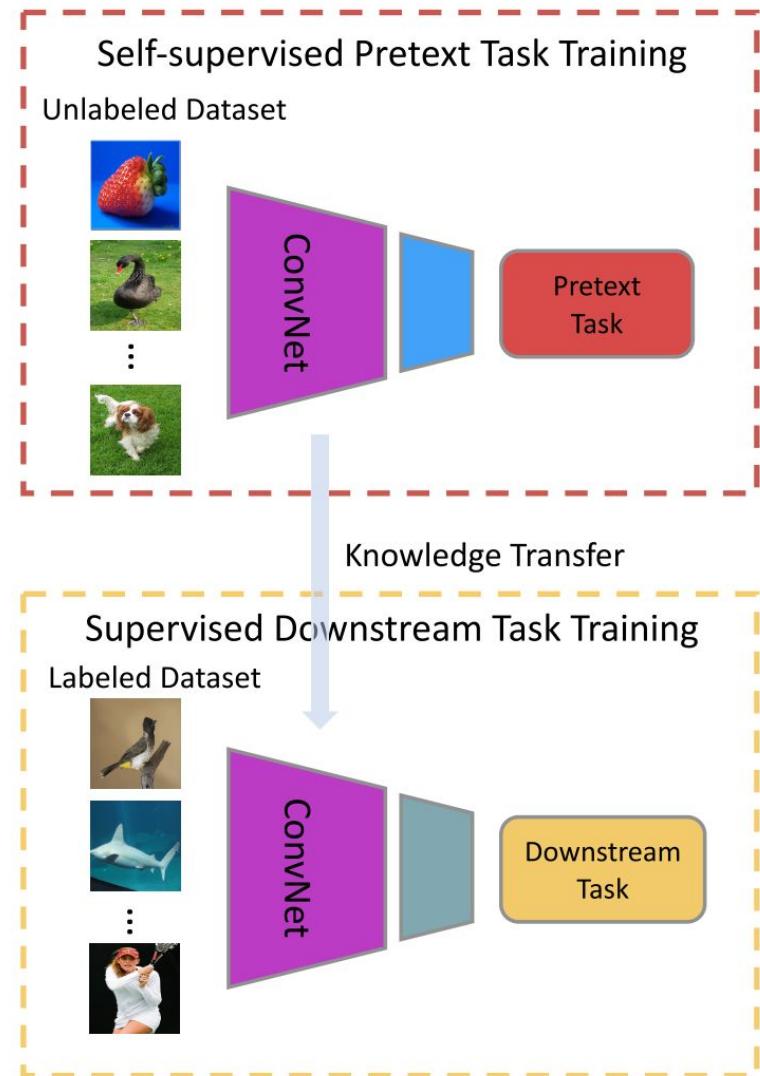
1. Freeze the pretrained representation network.
2. Attach a linear classifier on top of the frozen representation.
3. Train the linear classifier using a labeled train dataset.



Evaluation

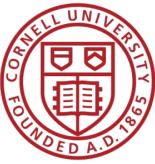
Linear Evaluation Protocol

1. Freeze the pretrained representation network.
2. Attach a linear classifier on top of the frozen representation.
3. Train the linear classifier using a labeled train dataset.
4. Evaluate the classifier's accuracy on a test dataset.



Experimental Setup

- Datasets
 - CIFAR-10/100 (+ STL-10 & Tiny ImageNet)
- SSL Algorithm
 - SimCLR (+ MoCo)
- Generative Model
 - Data Efficient StyleGAN2

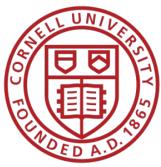


Experimental Setup

- Datasets
 - CIFAR-10/100 (+ STL-10 & Tiny ImageNet)
- SSL Algorithm
 - SimCLR (+ MoCo)
- Generative Model
 - Data Efficient StyleGAN2
- Data Hyperparameters
 - How many labeled samples (real)?
 - How many generated samples (fake)?

Learning Efficiency

- How quickly does this method train representations that perform well?
- Fix the compute of both this method and the baseline during pretraining, what do we observe in terms of accuracy?
- In the low data regime, there is a possibility that this method also improves the learning efficiency.



Questions?

Thank you!