
Improving the data efficiency in self-supervised
representation learning

Roberto Halpin Gregorio

May 9, 2022

Learning Representations
• Not all data is numerical but machine learning needs

numerical representations!

• For different data types, want to learn meaningful
representations that are:
– Model parsable

– Efficient / compact

– Informative for downstream tasks

Making Learning Easier

Unsupervised Representation Learning

• Given a set of unlabeled data, can we learn about the
structure of said data?
– Clustering
– Data compression / Dimensionality reduction

• Self-supervised learning
– Branch of unsupervised learning that uses a created pretext

task to learn representations of the data

Self-supervised Learning (SSL)

• Pretext Task
– Pre-designed tasks for networks to solve.
– Learning the objective function produces useful features.

• Downstream Task
– Applications of interest where the pretrained model can be

utilized.
– Greatly benefit from the pretrained models when training

data are scarce.

• RotNet (Gidaris et al. 2018)

Self-supervised Learning (SSL)

• Images are in a continuous, high-dimensional space.
• No need for labeled data.
• Longtail problem.

– Most labeled images correspond to very few label classes.

Why self-supervised learning in vision?

 Victor Dibia

Self-supervised Learning in Computer Vision
Common workflow

1. Pretext task used to train
model.
a. Unlabeled images.

2. Extract representation
network.

3. Representation network
used for downstream tasks.

Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey

https://arxiv.org/abs/1902.06162

Self-supervised Learning in Computer Vision
• Contrastive Learning

– Learn an embedding space where
• Similar (positive) sample pairs stay close to each other.
• Dissimilar (negative) sample pairs are far apart.

Khosla et al. 2004

https://arxiv.org/abs/2004.11362

Self-supervised Learning in Computer Vision
• Contrastive Learning

– Learn an embedding space where
• Similar (positive) sample pairs stay close to each other.
• Dissimilar (negative) sample pairs are far apart.

– How to create positive and negative sample pairs?
– How do we create the embedding space with these desired

properties?

Self-supervised Learning in Computer Vision
• SimCLR (Chen et al. 2020)

Self-supervised Learning in Computer Vision
• SimCLR (Chen et al. 2020)

Limitations of SSL
• How to identify the important invariances and

symmetries?

Limitations of SSL
• How to identify the important invariances and

symmetries?

• How do we learn representations that follow these
properties?

Limitations of SSL
• How to identify the important invariances and

symmetries?

• How do we learn representations that follow these
properties?

• Requires a large amount of pre-training iterations
(time inefficient).

Limitations of SSL
• How to identify the important invariances and

symmetries?

• How do we learn representations that follow these
properties?

• Requires a large amount of pre-training iterations
(time inefficient).

• Requires a large amount of data to learn good quality
representations (data inefficient).

Limitations of SSL
• How to identify the important invariances and

symmetries?

• How do we learn representations that follow these
properties?

• Requires a large amount of pre-training iterations
(time inefficient).

• Requires a large amount of data to learn good quality
representations (data inefficient).

Improving the data efficiency of SSL
• Focus on reducing the amount of real data needed.

• Standard approach is to use data augmentation.

• Most SSL methods use simple random data
transformations:

– Flipping

– Cropping

– Color jittering

– Gaussian blur

Improving the data efficiency of SSL
• Idea: Generate fake images using our real training data

and use these fake images as data augmentation.

Improving the data efficiency of SSL
• Idea: Generate fake images using our real training data

and use these fake images as data augmentation.

• Goal: Be able to beat the performance on the original,
real dataset.

Improving the data efficiency of SSL
• Idea: Generate fake images using our real training data

and use these fake images as data augmentation.

• Goal: Be able to beat the performance on the original,
real dataset.

• Requirement: A generative model that produces good
samples when trained with limited data.

Problem Setup

Generating the fake data
• Generative Adversarial Networks (GAN)
• StyleGAN2

– Unconditional generative image modeling.
– Know for good image quality.

• Data-efficient GANs
– Framework that improves GAN training efficiency.

CIFAR-10 Real Images CIFAR-10 Fake Images

Evaluation
Linear Evaluation Protocol

Evaluation
Linear Evaluation Protocol
1. Freeze the pretrained

representation network.

Evaluation
Linear Evaluation Protocol
1. Freeze the pretrained

representation network.

2. Attach a linear classifier on top
of the frozen representation.

Evaluation
Linear Evaluation Protocol
1. Freeze the pretrained

representation network.

2. Attach a linear classifier on top
of the frozen representation.

3. Train the linear classifier using
a labeled train dataset.

Evaluation
Linear Evaluation Protocol
1. Freeze the pretrained

representation network.

2. Attach a linear classifier on top
of the frozen representation.

3. Train the linear classifier using
a labeled train dataset.

4. Evaluate the classifier’s
accuracy on a test dataset.

Experimental Setup
• Datasets

– CIFAR-10/100 (+ STL-10 & Tiny ImageNet)
• SSL Algorithm

– SimCLR (+ MoCo)
• Generative Model

– Data Efficient StyleGAN2

Experimental Setup
• Datasets

– CIFAR-10/100 (+ STL-10 & Tiny ImageNet)
• SSL Algorithm

– SimCLR (+ MoCo)
• Generative Model

– Data Efficient StyleGAN2
• Data Hyperparameters

– How many labeled samples (real)?
– How many generated samples (fake)?

Learning Efficiency

• How quickly does this method train representations
that perform well?

• Fix the compute of both this method and the baseline
during pretraining, what do we observe in terms of
accuracy?

• In the low data regime, there is a possibility that this
method also improves the learning efficiency.

Questions?

Thank you!

