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Learning Representations
• Not all data is numerical but machine learning needs 

numerical representations!

• For different data types, want to learn meaningful 
representations that are:
– Model parsable

– Efficient / compact

– Informative for downstream tasks



Making Learning Easier



Unsupervised Representation Learning

• Given a set of unlabeled data, can we learn about the 
structure of said data?
– Clustering
– Data compression / Dimensionality reduction

• Self-supervised learning
– Branch of unsupervised learning that uses a created pretext 

task to learn representations of the data 



Self-supervised Learning (SSL)

• Pretext Task
– Pre-designed tasks for networks to solve.
– Learning the objective function produces useful features.

• Downstream Task
– Applications of interest where the pretrained model can be 

utilized.
– Greatly benefit from the pretrained models when training 

data are scarce.



• RotNet (Gidaris et al. 2018)

Self-supervised Learning (SSL)



• Images are in a continuous, high-dimensional space.
• No need for labeled data.
• Longtail problem.

– Most labeled images correspond to very few label classes.

Why self-supervised learning in vision?

 Victor Dibia



Self-supervised Learning in Computer Vision
Common workflow

1. Pretext task used to train 
model.
a. Unlabeled images.

2. Extract representation 
network.

3. Representation network 
used for downstream tasks.

Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey

https://arxiv.org/abs/1902.06162


Self-supervised Learning in Computer Vision
• Contrastive Learning

– Learn an embedding space where 
• Similar (positive) sample pairs stay close to each other.
• Dissimilar (negative) sample pairs are far apart.

Khosla et al. 2004

https://arxiv.org/abs/2004.11362


Self-supervised Learning in Computer Vision
• Contrastive Learning

– Learn an embedding space where 
• Similar (positive) sample pairs stay close to each other.
• Dissimilar (negative) sample pairs are far apart.

– How to create positive and negative sample pairs?
– How do we create the embedding space with these desired 

properties?



Self-supervised Learning in Computer Vision
• SimCLR (Chen et al. 2020)           
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• Requires a large amount of pre-training iterations 
(time inefficient).

• Requires a large amount of data to learn good quality 
representations (data inefficient).



Improving the data efficiency of SSL
• Focus on reducing the amount of real data needed.

• Standard approach is to use data augmentation.

• Most SSL methods use simple random data 
transformations:

– Flipping

– Cropping

– Color jittering

– Gaussian blur
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Improving the data efficiency of SSL
• Idea: Generate fake images using our real training data 

and use these fake images as data augmentation.

• Goal: Be able to beat the performance on the original, 
real dataset.

• Requirement: A generative model that produces good 
samples when trained with limited data.

 



Problem Setup



Generating the fake data
• Generative Adversarial Networks (GAN)
• StyleGAN2

– Unconditional generative image modeling.
– Know for good image quality.

• Data-efficient GANs
– Framework that improves GAN training efficiency.



CIFAR-10 Real Images CIFAR-10 Fake Images
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Evaluation
Linear Evaluation Protocol
1. Freeze the pretrained 

representation network.

2. Attach a linear classifier on top 
of the frozen representation.

3. Train the linear classifier using 
a labeled train dataset.

4. Evaluate the classifier’s 
accuracy on a test dataset.
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• SSL Algorithm
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– Data Efficient StyleGAN2



Experimental Setup
• Datasets

– CIFAR-10/100  (+ STL-10 & Tiny ImageNet)
• SSL Algorithm

– SimCLR (+ MoCo)
• Generative Model

– Data Efficient StyleGAN2
• Data Hyperparameters

– How many labeled samples (real)?
– How many generated samples (fake)?



Learning Efficiency

• How quickly does this method train representations 
that perform well?

• Fix the compute of both this method and the baseline 
during pretraining, what do we observe in terms of 
accuracy?

• In the low data regime, there is a possibility that this 
method also improves the learning efficiency.



Questions?

Thank you!


