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Abstract

Recently, masked image modeling has become a hot area of research in com-
puter vision. The main inspiration for this class of approaches is the success of
masked word modeling in NLP, where models such as BERT [6] and the GPT
line [2] have utilized this method for state-of-the-art results in language model-
ing. However, recent methods have seen limited success on image classification
tasks, including SimMIM [20], which achieves only a 56.7% linear top 1% evalua-
tion accuracy on ImageNet-1K. We propose to learn better frozen image features
by introducing MIM-CLR, a model that minimizes a novel joint loss between
the SimMIM reconstruction loss and a scaled contrastive loss. The contrastive
loss aims to pus features of masked images and their corresponding ground truth
images close together, while pulling apart the features of every other pair learn-
ing better representations. Code for our model and experiments can be found at
https://github.com/roberto-hg/Contrastive-SimMIM.

1 Introduction

Image representation learning is a critical field within computer vision research, and methods to learn
meaningful and compact representations have been explored in tandem with other representation
research such as language modeling.

The field has recently been dominated by contrastive approaches. These approaches augment images
and seek to learn representations such that the representations of a single image under different
augmentations are close while representations of an augmented image to different augmented images
are further apart. This is meant to learn invariance to a variety of augmentations, and in so learn
meaningful differences between images for downstream fine supervised approaches. This often
comes with the issue of humans needing to decide which augmentations are more or less meaningful
for downstream tasks than others. Standard augmentations applied in state of the art model SimCLR
[3] involve random cropping, color distortion, and Gaussian blur.

Masked image modeling is a generalizable image representation learning scheme inspired by the
success of large-scale masked language models in natural language processing. The hope is that
representations learned through masked image modeling can lead to few-shot generalization across a
wide variety of image-based downstream tasks, similar to how large MLMs like BERT [6] and GPT-3
[2] are universally used throughout the area of natural language processing. As Richard Feynman
once said, "what I cannot create, I do not understand," which implies that recreating images from
their masked counterparts can potentially lead to better general understanding of them, which can be
used in downstream tasks.

Generally, masked image modeling applies a mask to patches of an image, and during training, a
linear head is applied to the model feature representations to predict raw pixel values for pixels within
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each patch, and a loss is applied with true pixel values as the self-supervised labels. Representations
learned by models such as SimMIM [20] have exhibited strong results on a variety of downstream
tasks with fine-tuning, competitive with their mainstream, contrastive counterparts. Unfortunately,
SimMIM representations without fine-tuning failed to perform comparably: whereas fine-tuning
marginally outperformed other methods, linear probing yielded drastically worse results. On the
other hand, transformer-based contrastive methods, such as MoCo v3 [4], have achieved significantly
higher accuracies.

We seek to combine both these methods to extend the SimMIM architecture, a reconstruction-based
masked image modeling approach, by incorporating a contrastive loss when learning features along
with the SimMIM loss. It is hypothesized that jointly minimizing this contrastive loss along with
the SimMIM reconstruction loss will result in features that are invariant to how we mask the images,
allowing the model to generalize and perform better on unseen data while retaining the deep semantic
feature learning benefits from masked image modeling.

2 Related Work

2.1 Self-Supervised Representation Learning

Unfortunately, traditional methods of self-supervised learning have fallen behind the comparable
performances seen in other forms of machine learning and models. This has been especially true
within areas of increasing dataset sizes [12]. However, the introduction of contrastive learning
approaches within traditional modeling pipelines have pushed the envelope of performance [19].
While some proposals have been seen for utilizing alternatives to contrastive objectives, the application
of contrastive learning within self-supervised learning still has much to offer.

2.2 Contrastive Representation Learning

A lot of the recent self-supervised learning literature across a variety of fields has focused on
contrastive learning methods, which essentially boil down to the following learning regime: given
positive pairs of inputs (i.e. transformations of the same image/state in computer vision/RL) and
negative pairs (i.e. transformations of different inputs), we want to learn a feature map fθ that makes
sure positive pairs are close together in feature space, while negative pairs are far apart in said space,
thereby "contrasting" features of different inputs.

The CPC line [14] of methods introduced the InfoNCE contrastive loss, and showed that learning
CPC representations across a variety of modalities, especially in computer vision, improved the top-1
and top-5 accuracies of linear classifiers trained on top of said learned representations. SimCLR [3]
built on top of the InfoNCE loss by transforming input images x into two new views x′, x′′ (done
via simple augmentations such as random cropping), as opposed to the patch autoregressive method
in [14]. This method of augmenting the input image gives us a natural definition of positive and
negative examples. SimCLR’s similarity function is a standard cosine similarity loss.

2.3 Masked Language Modeling

Masked language modeling has been the dominant method for unsupervised representation learning
in natural language processing over the past few years. It builds off of the next token prediction
task [15], which takes in a sequence of tokens and seeks to predict the next token in sequence, and
the continuous bag of words task [11], which takes in a window of tokens and seeks to predict
the middle token. The unifying feature of these tasks is that they all model relationships between
tokens and proximity, claiming that by knowing the relationships between tokens and their contexts
we can capture useful structural and semantic information in language that could be leveraged for
downstream tasks.

Masked language modeling takes in a sequence of tokens and masks out tokens randomly for
prediction, learning the token’s relationship to its bidirectional context. Since seeing great success
4 years ago with the BERT model [6] in pre-training large language models and exhibiting strong
transfer learning performance to a variety of tasks, it has inspired similar methods in a variety of
fields.
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Figure 1: MIM-CLR method. Combining masked image modeling from SimMIM [20] and Con-
trastive Learning [3] in a multi-task setup. We train both tasks simultaneously by implementing a
joint loss with a contrastive scaling hyperparameter λ.

2.4 Masked Image Modeling

Masked image modeling builds off of the core concept of masked language modelling, seeking to
learn meaningful image representations by predicting on masked patches of an image given the rest
of the image, learning long-distance dependencies between pixels depending on patch sizes. Given
that language has natural discrete units in tokens, many masked image modelling tasks sought to
similarly use meaningfully segmented image patches. An example of this can be seen in the BEiT [1]
model, which uses a combination of 16x16 patches and discrete tokens obtained through a dVAE
image tokenizer. SimMIM [20] presented a simpler framework, removing tokenization but achieving
competitive results. We will be using this model as a base for masked image modelling.

2.5 Joint loss minimization

Multiple forays have been made into the application of more advanced representation-learning models,
a variety of which are trained via the minimization of a combination of losses, which can be either
task-specific or data-specific. ALIGN, one of the foundational works in representation learning aimed
to utilize noisy image alt-text data to generate visual/language representations [9]. The MURAL
team decided to extend the ALIGN model to the multi-lingual setting and modified the model by
adding a cross-lingual objective [8]. This improved results on image and text retrieval.

SLIP [13] applies two separate methods (CLIP [16] and SimCLR) in order to merge image self-
supervision and language supervision. While the team notes that it is not immediately clear why
these would generate a stronger performance [13]. We similarly merge SimMIM and SimCLR, in
attempt to see whether performance can be similarly increased or not.

3 MIM-CLR Framework

Our approach to masked image modeling was to minimize a novel joint loss utilizing a contrastive
loss to get more disentangled features for downstream classification tasks. Given a masked image x,
we apply a "weak" augmentation (i.e. random cropping or shifting) and a "strong" augmentation to
the image (i.e. the weak augmentation + the masking). The main idea is to make the representations
of the weak and strong image augmentations similar, while representations for different images
should be farther apart. We do this by applying the SimCLR [3] InfoNCE loss from SLIP [13] to
the weakly augmented representations z and the masked augmented representations zmask. In total,
MIM-CLR’s loss function is a linear combination of both the reconstruction SimMIM loss and a
contrastive InfoNCE loss:

LMIMCLR = Lreconstruction + λ · Lcontrastive.
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In some ways, our approach can be seen as a self-supervised version of FixMatch [18], which learns
an image classification model in the semi-supervised learning setting (some labels, but not all) by
"matching labels" of weakly augmented and strongly augmented versions of the same images together.
However, there are a couple of key differences:

1. FixMatch operates in the semi-supervised learning setting, so it incorporates a standard
cross entropy loss on the labeled data that we cannot use in our setting.

2. FixMatch assigns "pseudo-labels" to unlabeled images if the model’s confidence of the
classes on those images is above a certain threshold τ . This pseudo-label is then used to help
match the predicted labels on weakly and strongly augmented versions of the same unlabeled
data. However, this is different from our setting, as the validity of these pseudo-labels is due
in part to having labels to train on anyway, which we do not have.

3.1 SimMIM Method

SimMIM [20] is a recent masked image modeling method that focuses on reconstructing the images
in question by minimizing an ℓ1 loss between the real image input x and the predicted image output
y. One can see this ℓ1 loss as a measure of how close the RGB pixel values of the masked pixels were
to the corresponding real image pixels.

To do this reconstruction, the authors used an autoencoder-based architecture, where the encoder
was either a Swin transformer [10] or a vision transformer [7]. The transformer architecture, due
to its success in masked language modeling in NLP, was used in this case. The decoders were an
inverse Swin transformer and an inverse vision transformer, respectively. See the left side of 1 for
an illustration of this process. The authors found that the ℓ1 loss was the most suitable to achieve
state-of-the-art results in a variety of computer vision tasks (image classification, object detection,
semantic segmentation) with significantly less labeled data.

3.2 SimCLR Method

SimCLR [3] is a well-known, simple contrastive method to learn useful representations for image
classification. The main idea behind SimCLR is that different augmentations of one image I
(positive samples), should be "similar" in the feature space, whereas different images (regardless
of augmentation) should be separate (negative samples). These augmented images first get passed
through a feature encoder, and then a MLP projector (see the right side of Figure 1). SimCLR has
been shown to outperform a variety of other image classification models on ImageNet ILSVRC-2012
[17] with significantly less parameters than other competitive models.

3.3 MIM-CLR (our method)

Our method (shown in Figure 1), Masked Image Modeling through Contrastive Learned
Representations (MIM-CLR) seeks to combine the strengths of masked image models like SimMIM
and contrastive classification models like SimCLR to improve linear evaluation image classification
results with SimMIM.

As mentioned previously, SimMIM notably performs worse in comparison to other models in terms
of linear evaluation top 1% accuracy on ImageNet-1K, which we hypothesize is the result of learning
representations invariant to just how we can mask the image. We believe we can improve upon these
features by adding a contrastive loss to the SimMIM objective.

4 Implementation

We made small changes to the original SimMIM repository, adding in our contrastive loss to the
SimMIM module and support for the STL-10 dataset. Psuedocode for our MIM-CLR model is found
in Algorithm 1.

Due to the scope of this work, we did not train on ImageNet, but instead on the STL-10 dataset [5].
This dataset is inspired by CIFAR-10, but is more conducive to unsupervised representation learning,
as there is a significant amount of unlabeled data in the dataset. STL-10 has 100k unlabeled images,
5k labeled training images, and 8k testing images all of size 96x96x3. When pre-training we use
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Algorithm 1 MIM-CLR: PyTorch-like pseudocode

# encoder: vision transformer encoder network
# lambda_: Contrastive (SimCLR) scaling hyperparameter
def forward(img, mask):

x, x_mask = img, apply_mask(img, mask)

z, z_mask = encoder(x), encoder(x_mask) # vision transformer embed: N x C

loss = lambda_ * simclr(z, z_mask) + simmim(x, z_mask)
return loss

# decoder: vision transformer decoder network
def simmim(x, z_mask, mask):

x_rec = decoder(z_mask) # Reconstruct image

# Reshape mask to be compatible with loss
mask = mask.repeat_interleave(patch_size, 1).repeat_interleave(patch_size, 2).unsqueeze(1).contiguous()

loss_recon = l1_loss(x, x_rec)

loss = (loss_recon * mask).sum() / (mask.sum() + 1e-5) / color_channels # usually 3
return loss

# tau: softmax temperature
def simclr(z1, z2):

z1, z2 = normalize(z1, z2)
label = range(N)
mask = eye(N) * 1e9

logit = z1 @ z2.T
logit1 = z1 @ z1.T - mask
logit2 = z2 @ z2.T - mask

logit1 = cat(logit, logit1)
logit2 = cat(logit.T, logit2)

l1 = CrossEntropy(logit1 / tau)
l2 = CrossEntropy(logit2 / tau)

loss = (l1 + l2) / 2
return loss

Notes: @ is the matrix multiplication operator. k.T is k’s transpose. eye constructs an identity matrix. cat
concatenates two matrices. Figure adapted from SLIP [13].

the combination of the unlabeled images and the labeled training images (without labels), giving
us 105k unlabeled images. We pre-trained our MIM-CLR models with different contrastive scaling
hyperparameters λ and also trained a model by minimizing only the contrastive loss and not the
masked modeling loss. All our training hyperparameters were copied from standard SimMIM setups.
Note that these hyperparemeters were primarily used for ImageNet experiments, so using them in
both another model setup and a different dataset can lead to unpredictable results. However, due to
time constraints we were unable to tune any hyperparameters other than the constrastive scaling (λ).
Check Appendix A.1 for more training details.

There are two main protocols for evaluating visual self-supervised models:

• Linear Evaluation: The main idea behind linear evaluation is to completely freeze the
pre-trained feature network and attach a linear head on top. This linear head is then trained
for classification on the labeled train dataset with Cross Entropy loss. Evaluating this model
on the test set, gives us our desired accuracy metric.

• Fine-tuning: In fine-tuning we also have a linear heap on top of the pre-trained feature
network. However, the key difference is that the feature network is not frozen. This full
pipeline is trained on the small labeled train set, usually with a much smaller learning rate,
with the same classification framework as linear evaluation.

5 Experimental Results

We compare MIM-CLR’s top 1% and top 5% linear evaluation and fine-tuning scores to SimMIM’s
on STL-10. We pre-train all our models for 100 epochs on the 105k training images, saving models
every 5 epochs. Using these save models we use both evaluation protocols: fine-tuning and linear
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Linear Eval
Top-1 acc (%)

Linear Eval
Top-5 acc (%)

Fine-tune
Top-1 acc (%)

Fine-tune
Top-5 acc (%)

SimMIM [20] 28.53 ± 0.42 80.30 ± 0.11 63.51 ± 0.16 97.20 ± 0.08
MIM-CLR (ours) 38.84 ± 0.64 89.04 ± 0.24 65.73 ± 0.68 97.45 ± 0.12

Table 1: Our method, MIM-CLR, outperfoms SimMIM in both linear evaluation and fine-tuning
protocols on the STL-10 test set. Mean and standard deviation accuracies (top-1 and top-5) for both
evaluation protocols.
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Figure 2: Our best performing method variant (λ = 5.0) consistently outperforms SimMIM (λ = 0.0)
regardless of the amount of epochs spent pre-training in both fine-tuning and linear evaluation.

evaluation, training on the STL-10 labeled train set and testing on the STL10 test set. In all our
experiments we aimed to run three seeds to compute mean and standard deviation values, however
due to certain hiccups in the compute environment a few experiments have two trials and a very small
amount only have one trial. Overall, most experiments have three seeded runs, and those that have
less cause an arguably small impact on the results.

Table 1 shows the best version of our method , MIM-CLR, (λ = 5.0) versus SimMIM. Across the
board MIM-CLR outperfoms SimMIM in both linear evaluation and fine-tuning. This provides
support for our hypothesis that introducing a contrastive loss causes our model to learn better
representations of the image data.

Since we save pre-trained models every 5 epochs, we can analyze how each of these models perform
across epochs. Figure 2 shows this exact setup with the previous two model frameworks. Here
SimMIM is denoted by λ = 0.0, as it has no contrastive loss component. No matter the amount
of epochs we spend pre-training the models, our MIM-CLR model outperforms SimMIM. Notably
when performing linear evaluation, SimMIM does not seem to improve much over epochs. Our
hypotheses on why SimMIM does poorly here is discussed in Section 6.

Experiments with multiple values of the contrastive scaling hyperparameter λ were performed (see
Figure 3). Overall, we see similar trends as our method performs better than SimMIM across all
epochs, and in both linear evaluation and fine-tuning. Here we see that when the contrastive scaling
(λ) is 5.0 we observe the best results. Interestingly when we remove the reconstruction loss (SimMIM)
loss, we initially see a good performance, but it rapidly degrades as the epochs grow. We hypothesize
this is due to the ease of learning the contrastive loss in this setting. There is no reconstruction loss to
balance out leaning, so the model overfits on the contrastive loss. Figure 4 in the appendix backs up
the claim that the contrastive loss is easily fitted. The top left subplot shows that the contrastive loss
quickly converges close to zero for almost on variants of our method.
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Figure 3: Our method outperforms SimMIM (λ = 0.0) regardless of the amount of epochs spent
pre-training in almost all cases. A contrastive scaling (λ) of 5.0 tends to perform to best across the
board. However, having no reconstruction loss component causes the model to degrade poorly in
linear evaluation, and perform very poorly when fine-tuning.

6 Discussion & Conclusion

This report presents a simple way to increase the performance of masked image models in the case of
image classification, through the addition of a simple contrastive loss to the standard masked loss. Our
results suggest that MIM-CLR consistently outperforming SimMIM on STL-10 can translate over
to a more large-scale, higher-resolution image classification setting, such as in ImageNet. However,
there are plenty of future questions and open discussion areas:

• It is clear that training the model on small images (96 x 96 in the STL-10 case) hurts
the reconstruction abilities of the model in the future, as minimizing a reconstruction loss
doesn’t necessarily distill any useful information into the model (fine details get lost). For
example, it is more impressive and difficult to reconstruct a 224 x 224 image rather than a
96 x 96 image. This is our hypothesis for why SimMIM did not improve much regardless of
the number of epochs we trained.

• We did not tune any hyperparameters in our experiments, thus opting to use the ImageNet-
optimal SimMIM hyperparameters to minimize the reconstruction losses. This has the
potential to be improved for the case of STL-10 in particular.

• Compared to more standard contrastive learning objectives, such as SimCLR [3], the data
augmentations used in MIM-CLR are completely different from the augmentations generally
used in SimCLR. This goes to show why just a pure contrastive objective doesn’t work as
well in our experiments (in our case, it doesn’t really get minimized at all, see Figure 4). We
believe that a standard SimCLR model, where the same type of augmentation (i.e. different
random crops) is performed on positive pairs of images, has the potential to do very well on
STL-10 in terms of the accuracies reported in this paper.

Given these discussion points, we believe there is a lot of room for improvement in our method,
especially improving upon our current 38.8% linear evaluation top-1% accuracy.
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A Appendix

A.1 Experiment Details

Model Swin-custom
Base Channel 64

Depths {2, 2, 18, 2}
Heads {4, 8, 16, 32}
Params 23M

Pre-training
Input Size 96

Window Size 6
Mask Patch Size 16

Mask Ratio 0.6
Fine-tuning

Input Size 96
Window Size 6

Table 2: Detailed architecture specifications.

Train pre-train Lin Eval Fine-tune
Epochs 100 100 100

Warmup Epochs 10 20 20
Base LR 2e-4 1.25e-3 1.25e-3

Warmup LR 1e-6 2.5e-7 2.5e-7
Min LR 1e-5 2.5e-7 2.5e-7

Weight Decay 0.05 0.05 0.05
Layer Decay 0 0.9 0.9

Table 3: Detailed training specifications.
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A.2 Additional Experimental Results
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Figure 4: Unscaled loss values during pre-training on STL-10 unlabeled+train. In the first subplot:
there are slight variations in unscaled contrastive loss, higher contrastive scaling tends to produce
smaller contrastive loss. Interestingly, the second subplot shows that reconstruction loss is essentially
unaffected by contrastive scaling (λ). In the bottom two subplots: when including the no reconstruc-
tion loss or no contrastive loss variants we observe very poor reconstruction and contrastive loss
respectively, which is as expected.
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Figure 5: When looking at the joint loss of our models, almost all models perform similarly. However,
when reconstruction loss is not considered (subplot two) the model quickly converges to near zero
loss. This is most likely due to an easy contrastive objective, as most models get near zero loss
(Figure 4).
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Figure 6: Similar results are observed when measure top-5 accuracy on STL-10 test set. These are
the top-5 accuracy ablation results across pre-training epochs.
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