Pruning and The Lottery Ticket
Hypothesis

Roberto Halpin Gregorio



Quiz

1. Which structure is being removed/pruned in the Lottery Ticket Hypothesis paper?

‘ Individual weights

Entire neurons
C. Entire filters

D. Entire channels

2. Which heuristic is used to prune in the Lottery Ticket Hypothesis paper?

Magnitudes

B. Gradients

C. Activations



Network Pruning

® Most commonly it refers to setting a particular weight to 0 and freezing it for the course
of any subsequent training.

® This can easily be done by element-wise multiplying the weights W with a binary pruning

mask m.

1,4 m mQOW




Network Pruning

Algorithm 1 Pruning and Fine-Tuning

Input: N, the number of iterations of pruning, and

A AN A R R T

X, the dataset on which to train and fine-tune

W <« initialize()
W « trainToConvergence(f(X;W))
M « 11Vl
for: in1to N do

M < prune(M, score(W))

W <« fineTune(f(X; M & W))
end for
return M, W




Network Pruning

Algorithm 1 Pruning and Fine-Tuning

Input: N, the number of iterations of pruning, and

A AN A R R T

X, the dataset on which to train and fine-tune
W <« initialize()
W « trainToConvergence(f(X;W))
M « 11Vl
for: inlto N do
M < prune(M, score(W))
W <« fineTune(f(X; M & W))
end for
return M, W




What is Pruning?

e Remove superfluous structure

From Frankle ICLR 2019 talk



https://www.youtube.com/watch?v=s7DqRZVvRiQ

What is Pruning?

e Remove superfluous structure

Weights? Neurons? Filters? Channels?

From Frankle ICLR 2019 talk



https://www.youtube.com/watch?v=s7DqRZVvRiQ

What is Pruning?

e Remove superfluous structure

Magnitudes? Gradients? Activations?

From Frankle ICLR 2019 talk



https://www.youtube.com/watch?v=s7DqRZVvRiQ

What is Pruning?

e Remove superfluous structure

Magnitudes? Gradients? Activations?

e The pruned network can represent an equally accurate function.

From Frankle ICLR 2019 talk



https://www.youtube.com/watch?v=s7DqRZVvRiQ

Motivation

e |t supports generalization by regularizing overparameterized functions.

e It reduces the memory constraints during inference time by identifying well-performing
smaller networks which can fit in memory.

e It reduces energy costs, computations, storage and latency which can all support
deployment on mobile devices.



The Big Questions

e Can we train (sparsely) pruned networks
from scratch?

e Corollary: Do networks have to be so
overparameterized to learn?

From Frankle ICLR 2019 talk



https://www.youtube.com/watch?v=s7DqRZVvRiQ

The Big Questions

e Can we train (sparsely) pruned networks
from scratch? Yes

e Corollary: Do networks have to be so N
overparameterized to learn? O

From Frankle ICLR 2019 talk



https://www.youtube.com/watch?v=s7DqRZVvRiQ

Lottery Ticket Hypothesis
Weights pruned after training could have been pruned before training*.

*Need to use the same initializations.



Lottery Ticket Hypothesis

Weights pruned after training could have been pruned before training*.

*Need to use the same initializations.

The Lottery Ticket Hypothesis: A randomly-initialized, dense neural network contains a
subnetwork that is initialised such that — when trained in isolation — it can match the test
accuracy of the original network after training for at most the same number of iterations. -
Frankle & Carbin (2019, p.2)



How to train pruned networks successfully from scratch?

e LTH paper observes success using a method called Iterative Magnitude
Pruning (IMP).

o Prune individual weights based on their magnitude
o Reset each unpruned connection back to its initial value from before training

e Definition (Winning ticket).
o  When IMP produces a subnetwork of the original, untrained network that matches the
accuracy of the original network, it is called a winning ticket.



Iterative Magnitude Pruning (IMP)

e Starting from dense initialization W,, train network until convergence: WT(*D.




Iterative Magnitude Pruning (IMP)

e Starting from dense initialization W,, train network until convergence: WT(E).

e Determine the s percent smallest magnitude weights and create a binary mask m™) that
prunes these.




Iterative Magnitude Pruning (IMP)

e Starting from dense initialization W,, train network until convergence: WT(*D.

e Determine the s percent smallest magnitude weights and create a binary mask m™) that
prunes these.

® Retrain the sparsified network with its previous initial weight m® © W,.

m® © W, m® @ W2




Iterative Magnitude Pruning (IMP)

e Starting from dense initialization W,, train network until convergence: WT(*l).

e Determine the s percent smallest magnitude weights and create a binary mask m™) that
prunes these.

® Retrain the sparsified network with its previous initial weight m® © W,.

® After convergence, repeat the pruning process and reset to the initial weights with the
newly found mask m(®,



Iterative Magnitude Pruning (IMP)

e Starting from dense initialization W,, train network until convergence: WT(*D.

e Determine the s percent smallest magnitude weights and create a binary mask m™) that
prunes these.

® Retrain the sparsified network with its previous initial weight m® © W,.

® After convergence, repeat the pruning process and reset to the initial weights with the
newly found mask m(®,

® [terate this process until we reach the desired level of sparsity or the test accuracy drops
significantly.



Searching for Tickets: lterative Magnitude Pruning

Wo

Frankle & Carbin, 2019
Viz: @RobertTLange



Searching for Tickets: lterative Magnitude Pruning

Frankle & Carbin, 2019
Viz: @RobertTLange



Searching for Tickets: Iterative Magnitude Pruning

Frankle & Carbin, 2019
Viz: @RobertTLange



Searching for Tickets: Iterative Magnitude Pruning

Frankle & Carbin, 2019
Viz: @RobertTLange



Searching for Tickets: Iterative Magnitude Pruning

Frankle & Carbin, 2019
Viz: @RobertTLange



Searching for Tickets: lterative Magnitude Pruning

Prune

m o Wq(})

Frankle & Carbin, 2019
Viz: @RobertTLange



Searching for Tickets: Iterative Magnitude Pruning

Prune

mM o W7(~1*)

Frankle & Carbin, 2019
Viz: @RobertTLange



Searching for Tickets: Iterative Magnitude Pruning

v
Winning Ticket

.32%\3._’

A

Frankle & Carbin, 2019
Viz: @RobertTLange

A subnetwork that matches the
accuracy of the original network.



Lottery Tickets — LeNet on MNIST

—+ 1000 —— 513

&

o

3
1

Test Accuracy
S
o
>
|

=]

o

tn
1

0.94

I 1 I
5000 10000 15000
Training Iterations

—+ 211

Test Accuracy

—+— 70

—+ 36 —J— 19

0.99

<

=)

Qo
1

S

©

3
1

<

o

>
1

<

o

G
!

0.94

P2 i

=X

1 I
5000 10000
Training Iterations

I
15000

Test Accuracy

—}— 51.3 (reinit)

—}— 21.1 (reinit)

0.99

0.98

0.97

0.96

0.95 A

0.94

1 I 1
5000 10000 15000
Training Iterations



Lottery Tickets
-VGG-19 on CIFAR-10 -

Test Accuracy (112K)

0.80 T T T T T T T T T
100 41.0 168 69 28 1.2 05 02 0.1
Percent of Weights Remaining
—+— rate 0.1 ---f-= rand reinit ~—+— rate 0.01
rand reinit ~—+— rate 0.1, warmup 10K ---t-=- rand reinit

Test Accuracy (30K)

Lottery Tickets

- ResNet-20 on CIFAR-10 -

0.90

f=1

o0

s}
1

o

%

N
1

o

o

=
1

0.82 +

T T T T T
100 644 417 271 17.8 118 8

—+— rate 0.1

rand reinit

Percent of Weights Remaining

.0

5.5

---f-=- rand reinit —+— rate 0.01

—— rate 0.03, warmup 20K

---}-== rand reinit



Implications

e Pruning neural networks early in training.
e Examine subnetworks to develop better architectures and initializations.

e Reuse subnetworks on new tasks.



Limitations of Iterative Magnitude Pruning

e In order to scale the LTH to competitive CIFAR-10 architectures , Frankle &
Carbin (2019) had to tune learning rate schedules.

e Further work (Liu et al. 2018; Gale et al. 2019) show that without this adjustment
it is not possible to obtain a pruned network that is on par with the original
dense network.



| rate 0.1 rate 0.1, warmup rate 0.01 —%— rate 0.1 —}— rate 0.03, warmup —— rate 0.01

Test Accuracy End of Training

* random reinit * random reinit + random reinit --%-- random subnetwork ---f-- random subnetwork --4--- random subnetwork
VGG-19 Resnet-18
0.94
50
£ 0.90
R=
0.92 s
S 0.88 -
/5]
0.90 =
=
M 0.86
>
0.88 5
§ 0.84
0.86 <
' 'R é 0.82
0.84 T T T T T T — T T T T T T T T T —=
100  41.0 16.8 6.9 2.8 1.2 0.5 02 0.1 100 64.4 41.7 27.1 17.8 11.8 8.0 5.5
Percent of Weights Remaining Percent of Weights Remaining

On deeper networks for CIFAR10, IMP fails to find winning tickets unless the learning rate
schedule is altered.

How severe is this limitation?



The Fix: Rewinding

e Instead of rewinding to iteration 0 after pruning, we rewind to iteration k.



The Fix: Rewinding

e Instead of rewinding to iteration O after pruning, we rewind to iteration k.

The Lottery Ticket Hypothesis with Rewinding: Consider a dense, randomly-initialized
neural network f(x; Wy) that trains to accuracy a* in T iterations. Let W; be the weights

at iteration t of training. There exist an iteration k«T'* and fixed pruning mask
m € {0,1}Wol where || m ||; « | Wy|) such that subnetwork m ® Wi, trains to accuracy

a > a* inT <T* — k iterations. - Frankle et al. (2019, p. 2)



lterative Magnitude Pruning with Rewinding

Wo

Frankle et al., 2019
Viz: @RobertTLange



lterative Magnitude Pruning with Rewinding

' Train to iter k '

Wy W,El)
N / T\
P

Frankle et al., 2019
Viz: @RobertTLange



lterative Magnitude Pruning with Rewinding

' Train to iter k ' 'Train to converg.'

Wo

Frankle et al., 2019
Viz: @RobertTLange



lterative Magnitude Pruning with Rewinding

m o Wq(wl*)

Frankle et al., 2019
Viz: @RobertTLange



lterative Magnitude Pruning with Rewinding

' Train to iter k ' 'Train to converg.'

m o Wq(wl,.)

Wy W,Sl)

;

Frankle et al., 2019
Viz: @RobertTLange



lterative Magnitude Pruning with Rewinding

w m® o W

Frankle et al., 2019
Viz: @RobertTLange



lterative Magnitude Pruning with Rewinding

W(l)

;

Frankle et al., 2019
Viz: @RobertTLange



lterative Magnitude Pruning with Rewinding

Wy

wY

; '

(n) ® W(l) (n) ® W(n+1) (n+1) W(l)
Matching Ticket m ©
Frankle et al., 2019 . Iterate..

Viz: @RobertTLange



Test Accuracy End of Training

A

Rewinding Resnet-20 on CIFAR-10

Resnet-18

0.900 -

0.875

0.850

0.825

1 1 I I
417 271 178 11.8 8.0 55
Percent of Weights Remaining

—§— rewind to 0

rewind to 500

T T
100 64.4

--%--- random reinit
random reinit

B Rewinding Resnet-50 on ImageNet

Resnet-50 on ImageNet (Iterative)

3
L
1

\1
S
1

Top-1 Accuracy

(=)
h

1 I I 1
41.0 26.2 16.8 10.7 6.9 4.4
Percent of Weights Remaining

1 1
100 64.0

rewind to 6 (oneshot) —eo— rewind to 6 (iterative)

—+— rewind to O (iterative) o o

random reinit



Early-Bird Tickets

e You et al, 2020 identify winning tickets early on in training using a low-cost

training scheme.
o early stopping Progressive Pruning and Training

o low precision Train:d Mo:el
o large learning rates hvs e \ <N
’ ’ D<p<] ‘ =
ST @ ‘

100% training
(train N epochs, e.g., N = 160)
EB Train (Proposed)

<] -

<5 0N

6% - 20% training
(train Ngp epochs, e.g., Ngg = 10)



Early-Bird Tickets

Algorithm 1: The Algorithm for Searching EB Tickets

1: Initialize the weights W, scaling factor r, pruning ratio p, and the FIFO queue () with length [;
2: while ¢ (epoch) < t,,,,. do
3:  Update W and r using SGD training;

4:  Perform structured pruning based on r; towards the target ratio p;
5:  Calculate the mask distance between the current and last subnetworks and add to Q.
6: t=t+1
7:  if Max(Q) < € then
8: th =t
9: Return f(z; m+ © W) (EB ticket);
10:  endif

11: end while




—_— PreResNetl01 VGG1l6 PreResNetl01 VGG16
&13 AcCC.:93.83% [—a— p=30% 35|Acc.:93.05% [—— p=10% 18{ACC.:72.8% [=—d= p=30% 35/Acc.:71.28% [—— p=10%
n —— p=50% == p=30% -— p=50% - p=30%
a 16 . —— p=70% 30| ®<3- —— p=50% 16 o —— p=70% 30| @3- —— p=50%
37 EB ticket with EB ticket with Sy EB ticket with EB ticket with
9 14 * the best Acc. 25 * the best Acc. 14 * the best Acc. 25 * the best Acc.
=2 ol Lo el o bt T 5
2.17X - : .
.E 10 Acc.:93.81% 20 Acc.:93.39% 10 2.33X Acc.:73.08% 20 Acc.:72.27%
ﬁ 8 J 15
5 6 10
_— 4
[1+]
5
.'6 5 /
- 0 1 3 5 10 20 40 60 0 1 3 5 10 20 40 60 0O 1 3 10 20 40 60 0 1 3 5 10 20 40 60

Epoch subnetwork drawn from

Epoch subnetwork drawn from

CIFAR-10

Epoch subnetwork drawn from

CIFAR-100

Epoch subnetwork drawn from




Pruning Top-1 Top-1 Acc. Top-5 Top-5 Acc. | Total Training Total Training

Models  Methods ratio Acc. (%) Improv. (%) | Acc. (%) Improv. (%) FLOPs (P) Energy (MJ)
Unpruned - 69.57 - 89.24 - 1259.13 98.14
pesMell8 T 10% | 69.84 +0.27 89.39 +0.15 1177.15 95.71
MAgERet  EB Train - 309 68.28 -1.29 88.28 -0.96 952.46 84.65
Unpruned - 75.99 - 92.98 - 2839.96 280.72

ResNet50

ImageNet 30% 73.86 -1.73 91.52 -1.46 2242.30 232.18
EB Train 50% 73.35 -2.24 91.36 -1.62 1718.78 188.18
70% 70.16 -5.43 89.55 -3.43 890.65 121.15




Malach et al. Proving the Lottery Ticket Hypothesis: Pruning is All You Need

Fix a network G(x) = W¢Wg (WG(Z"DU(... WG(l)x)), where o(x) = max{x, 0} (ReLU) and
WE® are the weights in the i-th layer.

wew g raxn, WE® e R™" forevery 1 <i <1, wew e Rnx1,



Malach et al. Proving the Lottery Ticket Hypothesis: Pruning is All You Need

Fix a network G(x) = W¢Wg (Wc(l"l)a(... WG(l)x)), where o(x) = max{x, 0} (ReLU) and
WE® are the weights in the i-th layer.

weéw e gaxn, e e R foreveryl<i<l,  WEW e R,

Definition (subnetwork):
A subnetwork of G is any network of the form G (x) = W¢Wqg (WG(Z_DO'(... VT/G(”x)),
where W&® =m;, © WE® for some m; € {0,1}"in*Mout,

(Nin, Moy denote the input/output dimension of each layer, respectively)



Malach et al. Proving the Lottery Ticket Hypothesis: Pruning is All You Need

® Given a target network of depth [ with bounded weights

® A random network of depth 2l and polynomial width contains with high probability a
subnetwork that approximates the target network.



Malach et al. Proving the Lottery Ticket Hypothesis: Pruning is All You Need

® Given a target network of depth [ with bounded weights

® A random network of depth 2l and polynomial width contains with high probability a
subnetwork that approximates the target network.

Theorem 2.1. Fix some ¢, € (0,1). Let F' be some target network of depth | such that for every i € [I] we
have |[WF® |y < L]|WFO|| pay < \/% (where n;, = d fori =1 and n;, = n fori > 1). Let G be a
network of width poly(d,n,, %, log %) and depth 21, where we initialize WS from U([—1,1]). Then, w.p
at least 1 — ¢ there exists a weight-subnetwork G of G such that:

~

sup |G(z) — F(z)| < e
zeX



Discussion and Open Questions

® What does this actually tell us about these highly non-linear systems (deep nets) we are
trying to understand?

e What additional theoretical support would help augment the Lottery Ticket Hypothesis?

e \What could be the main ingredients that determine whether an initialization is a winning
ticket or not?

e What is special about large weights? Do other alternative rewinding strategies preserve
winning tickets? And why set weights to zero?

® Any interesting additional experiments to try?

e (Can we exploit lottery tickets?



References

® Frankle, J., & Carbin, M. (2019). The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks. arxiv.org/abs/1803.03635.

® Frankle, J., Dziugaite, G, Roy, D., & Carbin, M. (2020). Stabilizing the Lottery Ticket Hypothesis.
arxiv.org/abs/1903.01611.

® You, H, et al. (2020). Drawing Early-Bird Tickets: Towards More Efficient Training of Deep Networks.
arxiv.org/abs/1909.11957.

® lange, R. (2020). The Lottery Ticket Hypothesis: A Survey. roberttlange.github.io/year-
archive/posts/2020/06/lottery-ticket-hypothesis/.

® Malach, E., Yehudai, G, Shalev-Shwartz, S., & Shamir, O. (2020). Proving the Lottery Ticket
Hypothesis: Pruning is All You Need. arxiv.org/abs/2002.00585.



https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/1909.11957
https://roberttlange.github.io/year-archive/posts/2020/06/lottery-ticket-hypothesis/
https://arxiv.org/abs/2002.00585

