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Quiz

1. Which structure is being removed/pruned in the Lottery Ticket Hypothesis paper?

‘ Individual weights

Entire neurons
C. Entire filters

D. Entire channels

2. Which heuristic is used to prune in the Lottery Ticket Hypothesis paper?

Magnitudes

B. Gradients

C. Activations



Network Pruning

® Most commonly it refers to setting a particular weight to 0 and freezing it for the course
of any subsequent training.

® This can easily be done by element-wise multiplying the weights W with a binary pruning

mask m.
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Network Pruning

Algorithm 1 Pruning and Fine-Tuning

Input: N, the number of iterations of pruning, and

A AN A R R T

X, the dataset on which to train and fine-tune

W <« initialize()
W « trainToConvergence(f(X;W))
M « 11Vl
for: in1to N do

M < prune(M, score(W))

W <« fineTune(f(X; M & W))
end for
return M, W
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What is Pruning?

e Remove superfluous structure

From Frankle ICLR 2019 talk
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What is Pruning?

e Remove superfluous structure

Magnitudes? Gradients? Activations?

e The pruned network can represent an equally accurate function.

From Frankle ICLR 2019 talk



https://www.youtube.com/watch?v=s7DqRZVvRiQ

Motivation

e |t supports generalization by regularizing overparameterized functions.

e It reduces the memory constraints during inference time by identifying well-performing
smaller networks which can fit in memory.

e It reduces energy costs, computations, storage and latency which can all support
deployment on mobile devices.



The Big Questions

e Can we train (sparsely) pruned networks
from scratch?

e Corollary: Do networks have to be so
overparameterized to learn?

From Frankle ICLR 2019 talk



https://www.youtube.com/watch?v=s7DqRZVvRiQ

The Big Questions

e Can we train (sparsely) pruned networks
from scratch? Yes

e Corollary: Do networks have to be so N
overparameterized to learn? O

From Frankle ICLR 2019 talk
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Lottery Ticket Hypothesis
Weights pruned after training could have been pruned before training*.

*Need to use the same initializations.



Lottery Ticket Hypothesis

Weights pruned after training could have been pruned before training*.

*Need to use the same initializations.

The Lottery Ticket Hypothesis: A randomly-initialized, dense neural network contains a
subnetwork that is initialised such that — when trained in isolation — it can match the test
accuracy of the original network after training for at most the same number of iterations. -
Frankle & Carbin (2019, p.2)



How to train pruned networks successfully from scratch?

e LTH paper observes success using a method called Iterative Magnitude
Pruning (IMP).

o Prune individual weights based on their magnitude
o Reset each unpruned connection back to its initial value from before training

e Definition (Winning ticket).
o  When IMP produces a subnetwork of the original, untrained network that matches the
accuracy of the original network, it is called a winning ticket.



Iterative Magnitude Pruning (IMP)

e Starting from dense initialization W,, train network until convergence: WT(*D.
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prunes these.




Iterative Magnitude Pruning (IMP)

e Starting from dense initialization W,, train network until convergence: WT(*D.
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® After convergence, repeat the pruning process and reset to the initial weights with the
newly found mask m(®,



Iterative Magnitude Pruning (IMP)

e Starting from dense initialization W,, train network until convergence: WT(*D.

e Determine the s percent smallest magnitude weights and create a binary mask m™) that
prunes these.

® Retrain the sparsified network with its previous initial weight m® © W,.

® After convergence, repeat the pruning process and reset to the initial weights with the
newly found mask m(®,

® [terate this process until we reach the desired level of sparsity or the test accuracy drops
significantly.



Searching for Tickets: lterative Magnitude Pruning
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Frankle & Carbin, 2019
Viz: @RobertTLange
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Searching for Tickets: lterative Magnitude Pruning
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Searching for Tickets: Iterative Magnitude Pruning

Prune

mM o W7(~1*)
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Searching for Tickets: Iterative Magnitude Pruning

v
Winning Ticket

.32%\3._’

A

Frankle & Carbin, 2019
Viz: @RobertTLange

A subnetwork that matches the
accuracy of the original network.



Lottery Tickets — LeNet on MNIST
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Lottery Tickets
-VGG-19 on CIFAR-10 -
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Implications

e Pruning neural networks early in training.
e Examine subnetworks to develop better architectures and initializations.

e Reuse subnetworks on new tasks.



Limitations of Iterative Magnitude Pruning

e In order to scale the LTH to competitive CIFAR-10 architectures , Frankle &
Carbin (2019) had to tune learning rate schedules.

e Further work (Liu et al. 2018; Gale et al. 2019) show that without this adjustment
it is not possible to obtain a pruned network that is on par with the original
dense network.
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On deeper networks for CIFAR10, IMP fails to find winning tickets unless the learning rate
schedule is altered.

How severe is this limitation?



The Fix: Rewinding

e Instead of rewinding to iteration 0 after pruning, we rewind to iteration k.



The Fix: Rewinding

e Instead of rewinding to iteration O after pruning, we rewind to iteration k.

The Lottery Ticket Hypothesis with Rewinding: Consider a dense, randomly-initialized
neural network f(x; Wy) that trains to accuracy a* in T iterations. Let W; be the weights

at iteration t of training. There exist an iteration k«T'* and fixed pruning mask
m € {0,1}Wol where || m ||; « | Wy|) such that subnetwork m ® Wi, trains to accuracy

a > a* inT <T* — k iterations. - Frankle et al. (2019, p. 2)



lterative Magnitude Pruning with Rewinding
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lterative Magnitude Pruning with Rewinding
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lterative Magnitude Pruning with Rewinding
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lterative Magnitude Pruning with Rewinding
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lterative Magnitude Pruning with Rewinding
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lterative Magnitude Pruning with Rewinding
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Test Accuracy End of Training
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Early-Bird Tickets

e You et al, 2020 identify winning tickets early on in training using a low-cost

training scheme.
o early stopping Progressive Pruning and Training

o low precision Train:d Mo:el
o large learning rates hvs e \ <N
’ ’ D<p<] ‘ =
ST @ ‘

100% training
(train N epochs, e.g., N = 160)
EB Train (Proposed)

<] -

<5 0N

6% - 20% training
(train Ngp epochs, e.g., Ngg = 10)



Early-Bird Tickets

Algorithm 1: The Algorithm for Searching EB Tickets

1: Initialize the weights W, scaling factor r, pruning ratio p, and the FIFO queue () with length [;
2: while ¢ (epoch) < t,,,,. do
3:  Update W and r using SGD training;

4:  Perform structured pruning based on r; towards the target ratio p;
5:  Calculate the mask distance between the current and last subnetworks and add to Q.
6: t=t+1
7:  if Max(Q) < € then
8: th =t
9: Return f(z; m+ © W) (EB ticket);
10:  endif

11: end while
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Pruning Top-1 Top-1 Acc. Top-5 Top-5 Acc. | Total Training Total Training

Models  Methods ratio Acc. (%) Improv. (%) | Acc. (%) Improv. (%) FLOPs (P) Energy (MJ)
Unpruned - 69.57 - 89.24 - 1259.13 98.14
pesMell8 T 10% | 69.84 +0.27 89.39 +0.15 1177.15 95.71
MAgERet  EB Train - 309 68.28 -1.29 88.28 -0.96 952.46 84.65
Unpruned - 75.99 - 92.98 - 2839.96 280.72

ResNet50

ImageNet 30% 73.86 -1.73 91.52 -1.46 2242.30 232.18
EB Train 50% 73.35 -2.24 91.36 -1.62 1718.78 188.18
70% 70.16 -5.43 89.55 -3.43 890.65 121.15




Malach et al. Proving the Lottery Ticket Hypothesis: Pruning is All You Need

Fix a network G(x) = W¢Wg (WG(Z"DU(... WG(l)x)), where o(x) = max{x, 0} (ReLU) and
WE® are the weights in the i-th layer.

wew g raxn, WE® e R™" forevery 1 <i <1, wew e Rnx1,



Malach et al. Proving the Lottery Ticket Hypothesis: Pruning is All You Need

Fix a network G(x) = W¢Wg (Wc(l"l)a(... WG(l)x)), where o(x) = max{x, 0} (ReLU) and
WE® are the weights in the i-th layer.

weéw e gaxn, e e R foreveryl<i<l,  WEW e R,

Definition (subnetwork):
A subnetwork of G is any network of the form G (x) = W¢Wqg (WG(Z_DO'(... VT/G(”x)),
where W&® =m;, © WE® for some m; € {0,1}"in*Mout,

(Nin, Moy denote the input/output dimension of each layer, respectively)



Malach et al. Proving the Lottery Ticket Hypothesis: Pruning is All You Need

® Given a target network of depth [ with bounded weights

® A random network of depth 2l and polynomial width contains with high probability a
subnetwork that approximates the target network.



Malach et al. Proving the Lottery Ticket Hypothesis: Pruning is All You Need

® Given a target network of depth [ with bounded weights

® A random network of depth 2l and polynomial width contains with high probability a
subnetwork that approximates the target network.

Theorem 2.1. Fix some ¢, € (0,1). Let F' be some target network of depth | such that for every i € [I] we
have |[WF® |y < L]|WFO|| pay < \/% (where n;, = d fori =1 and n;, = n fori > 1). Let G be a
network of width poly(d,n,, %, log %) and depth 21, where we initialize WS from U([—1,1]). Then, w.p
at least 1 — ¢ there exists a weight-subnetwork G of G such that:

~

sup |G(z) — F(z)| < e
zeX



Discussion and Open Questions

® What does this actually tell us about these highly non-linear systems (deep nets) we are
trying to understand?

e What additional theoretical support would help augment the Lottery Ticket Hypothesis?

e \What could be the main ingredients that determine whether an initialization is a winning
ticket or not?

e What is special about large weights? Do other alternative rewinding strategies preserve
winning tickets? And why set weights to zero?

® Any interesting additional experiments to try?

e (Can we exploit lottery tickets?
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