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Abstract
Accelerating Distributed Stochastic Gradient De-
scent (DSGD) is important for faster and large-
scale Machine Learning (ML) training. However,
that is challenging due to the large network over-
head between nodes. Even though RDMA (Re-
mote Direct Memory Access) has received atten-
tion by researchers as it improves both network
latency and throughput by an order of magnitude
compared to TCP, how to optimize DSGD for
RDMA networks has not been researched deeply
yet. In this paper we first demonstrate that ex-
ploiting RDMA for DSGD brings enormous per-
formance benefits over TCP as RDMA has no
extra memory copies and context-switching to
the OS kernel, which drops computing and net-
working performance of workers. Furthermore,
we propose RDMA-wild, a novel asynchronous
DSGD for RDMA networks in which workers
asynchronously train in parallel on a partitioned
training dataset maintaining the almost same con-
vergence rate as Sync-DSGD per epoch. We
empirically show that RDMA-wild outperforms
Sync-DSGD using RDMA and TCP for both con-
vex and non-convex problems on the MNIST
dataset.

1. Introduction & Motivation
Accelerating Distributed Stochastic Gradient Descent
(DSGD) under a parameter server setting is an important
and practical challenge in modern distributed machine learn-
ing (ML) systems. This is because the use of SGD in a
parameter server setting can be seen as a default distributed
training setup in state-of-the-art frameworks such as Tensor-
Flow(Abadi et al., 2016), CNTK(Seide & Agarwal, 2016),
and MXNet(Chen et al., 2015) due to its effective perfor-
mance over various machine learning tasks.

However, heavy pressure on the central parameter server
and strict requirements on the underlying network has been
pointed out by several researchers as its limitation since it
can be a performance bottleneck when it scales up. In order

to resolve this issue, researchers have proposed decentral-
ized training and quantized communication approach that
achieves better training wall-clock time by mixing models
and dropping out less significant bits. (Tang et al., 2018),
(Lu & De Sa, 2020).

Recently, RDMA (Remote Direct Memory Access) has got-
ten attention by systems researchers as it improves both
network latency and throughput by an order of magnitude
compared to TCP as it does not require copying from source
to destination memory. Unlike TCP, RDMA avoids memory
copy between OS kernel memory region and application
memory region, resulting in a significant network perfor-
mance improvement (Wei et al., 2020), (Jha et al., 2019),
(Dragojević et al., 2014).

For ML practitioners, this is good news as RDMA is ex-
pected to significantly relieve the performance bottleneck
in the central parameter server. This raises the question
that decentralization and quantization is not necessarily a
better choice for some practical ML tasks as it trades-off
statistical performance and systems performance to avoid
the performance drop by the network bottleneck.

In order to demonstrate the enormous performance bene-
fits of RDMA for DSGD, we conducted the basic central-
ized synchronous DSGD protocol (Sync-DSGD), results
are shown in Figure 1. We break down the total training
wall-clock time to two parts: (actual) training time, and
wait time. The training time is the time taken by workers to
compute gradients and push the gradients to the parameter
server, and the wait time is the time taken by the workers to
wait for the consistent global ML model from the parameter
server.

Our results show that RDMA roughly reduces wait time by
6x and training time by 2x compared to TCP when 15 work-
ers train Logistic Regression (LR) with the MNIST dataset
under the 100Gbps network channel. This can be primarily
attributed to, differently from TCP, RDMA having no ex-
tra memory copies and context-switching to the OS kernel,
which improves computing and networking performance.

Despite RDMA’s high potential to improve the performance
of ML systems, in-depth research on developing specialized
asynchronous protocols of DSGD for RDMA in the param-
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Figure 1. Performance Breakdown of Sync-DSGD for logistic
regression under 100 epochs and 60 batch-size per worker on
MNIST. TCP takes not only longer wait time but also longer
training time than RDMA.

eter server setting has not been done. Existing work has
been just focused on how to tune RDMA transfer effectively
for ML-models/gradients transfer (Xue et al., 2019), (Ren
et al., 2017) rather than how to optimize the DSGD protocol
for RDMA. Note that SGD is one of the most popular and
fundamental ML model optimization algorithms.

In this paper, we propose RDMA-wild, a novel asyn-
chronous DSGD for RDMA that maximizes RDMA per-
formance using one-sided RDMA write and state machine
replication. To the best of our knowledge, there is no exist-
ing asynchronous DSGD protocol specialized for RDMA
networks. Our contributions can be summarized as follows:

• We show that exploiting RDMA for DSGD brings enor-
mous performance benefits for computing and network-
ing that is not achievable by TCP.

• We propose RDMA-wild, a novel asynchronous
DSGD for RDMA in which workers asynchronously
train in parallel with partitioned training dataset similar
to Hogwild (Recht et al., 2011). We solve the gradi-
ent loss and new gradient detection issues that occur
when developing asynchronous DSGD for RDMA. As
a result, RDMA-wild maintains almost the same con-
vergence rate as synchronous DSGD per epoch (i.e., a
single entire training dataset pass).

• We empirically show that RDMA-wild outperforms
TCP and RDMA synchronous DSGD in both convex
and non-convex problems on the MNIST dataset.

Intuition behind RDMA-wild. RDMA-wild was inspired
by Hogwild where workers train asynchronously without
locking the shared model memory region, allowing the race
condition. We abstract multiple nodes like Hogwild, exploit-
ing RDMA’s high-speed network. This generates an illusion
that RDMA-wild works on a single gigantic DRAM with
scalable computing units. Note that TCP is much slower
and more unstable than RDMA that applying Hogwild over
TCP-connected nodes is more challenging due to the poten-
tial of high model staleness.

2. Background
Stochastic Gradient Descent. Stochastic gradient descent
(SGD) is a popular ML model optimization algorithm that
achieves state-of-the-art performance on various machine
learning problems as it is applicable to differentiable loss
functions and scalable for large datasets. In a given amount
of time, it updates ML models more frequently with a gra-
dient sample which is much noisier than the full gradient
of Gradient Descent (GD) but takes much less time. That
trade-off turned out to be great as the noisy gradient sample
roughly points to the right optimizing direction anyways in
expectation. Thus, SGD is more effective and scalable than
GD as it accumulates the good trade-off between statisti-
cal performance and systems performance during training,
which results in reduced total wall-clock training time. Its
most common variant is mini-batch stochastic gradient de-
scent where multiple examples are used per iteration instead
of just one example for the sake of reducing the variance of
gradient samples and utilizing GPU or CPU parallelism. It is
often the default model update scheme due to its efficiency.
In this work we create algorithms that try to optimize the
use of mini-batch SGD in the distributed setting.

Synchronous and Asynchronous SGD. Even though SGD
makes ML model optimization more effective and scalable
than GD, it is not sufficiently rapid for large ML models
applied on massive datasets. Thus, parallelizing SGD over
a partitioned dataset with multi-threads in a single node or
distributed nodes is necessary. There are two parallelizing
techniques in this approach: synchronous and asynchronous
SGD. Both have four main operations in the parameter
server setting.

• Op1: Server updates model.

• Op2: Server pushes new model to workers.

• Op3: Worker computes a new gradient using a new
model and dataset.

• Op4: Worker pushes a new gradient to server.

In synchronous SGD, Op1, Op2, Op3, and Op4 are done
sequentially. Thus, server waits until all the workers push
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new gradients and the workers wait until the server pushes
new model. Even though these synchronous behaviors make
parallel SGD equivalent to single thread SGD in terms of
computation, it causes inefficiency as fast workers should
wait the slowest worker. Asynchronous SGD is motivated to
resolve this issue. It overlaps an operation pair of Op1 and
Op2, and the other operation pair of Op3 and Op4 by letting
workers work independently from each other, so it tries to
reduce the workers’s waiting time. It trades-off between
systems performance and statistical performance as it causes
model staleness; while one worker computes a new gradient
with a model, if the model in the parameter server is updated
by other workers, the computed gradient by the worker
becomes less accurate because that will be used to update a
different copy of model, which is not intended. Interestingly,
it turned out to be a good trade-off as SGD is noisy itself
(De Sa et al., 2015). However, careful design is required
when the underlying network performance fluctuates due to
preemption, context-switch, large data copy, system crash,
etc. (Li et al., 2014), (Ho et al., 2013). This is because when
slow workers are too far behind faster workers, the training
can be very sensitive or diverge if we don’t bound faster
workers’ asynchrony properly.

Hogwild. Hogwild (Recht et al., 2011) is a fully asyn-
chronous SGD algorithm in the sense that it does not bound
worker’s asynchrony at all. It implements asynchronous
SGD with multi-threaded workers on a single node where
workers can communicate through fast and stable memory
buses of DRAM. Thus, it implements asynchronous SGD
without any locks to prevent locking from becoming a per-
formance bottleneck. However, Hogwild has limitations
that 1) the optimization should be sparse, and 2) it should
be conducted under a fast and stable network, for example
within a single node. As shown in other works (Zhang et al.,
2016) (Gupta et al., 2012), the second constraint limits scal-
ability due to contention for shared architectural resources
(e.g., cache, memory) as the number of threads gets larger.
Leveraging an emerging fast network, RDMA, we target to
overcome the limitations of Hogwild.

Centralized Distributed ML. In distributed machine learn-
ing a centralized approach is popular among state-of-the-art
frameworks (Abadi et al., 2016) (Seide & Agarwal, 2016),
(Chen et al., 2015). It designates a small subset of nodes to
be parameter servers and other nodes to be workers, which
maintain global shared model (i.e, parameters) and perform
gradient computations on a partitioned training dataset. The
parameter server receives gradient updates from the workers
and uses those gradients to update the global model which
it then broadcasts to the workers. The workers receive the
global model from the server and each worker computes
local gradients using that model on the partitioned data that
they have been allocated. This classic centralized distributed
ML framework is commonly used due to its ease of use and

its efficiency. RDMA-wild is built in this parameter server
setting.

Decentralized Distributed ML. Another distributed ma-
chine learning approach is the decentralized setup. Instead
of having a small amount of central nodes, such as param-
eter servers, that handle most of the communication and
perform much different computations than worker nodes,
the decentralized setup makes every node perform all the
required tasks. This setup is attractive due to evenly splitting
the needed computations between all nodes in the cluster.
However, one large concern in this approach is the slow
model mixing time, which increases training time (Lian
et al., 2017).

3. RDMA for ML
RDMA is an emerging fast network technology in which
one node can bypass remote node’s CPU and directly ac-
cess the other remote node main memory without any extra
data copy. RDMA has two communication modes: one-
sided RDMA transfer and two-sided RDMA transfer. As
their names imply, in one-sided RDMA transfer, senders
can RDMA-transfer without receivers’ participation once
initial consensus about RDMA memory regions are done.
However, in two-sided RDMA transfer, senders can start
sending only after receivers have posted. Thus, the two-
sided RDMA transfer includes CPU engagement whereas
the one-sided RDMA transfer does not. In our work we use
the term RDMA specifically to refer to one-sided RDMA
transfer.

Therefore, if RDMA is used for ML systems, training can
be done without any blocking. This property is attractive
especially for asynchronous DSGD as it opens up a new
opportunity in which communication for model/gradient
exchanges can be fully overlapped with computation for
models/gradients, resulting in potential performance gains
for ML systems. Note that this is hardly achievable by
TCP as it includes extra data copies between the application
and the OS kernel that cause context-switching, and remote
node’s CPU involvement.

In the statistical perspective, RDMA can help asynchronous
DSGD realize better convergence rate due to decreased
model staleness, achieved by no additional copying and
non-stop training.

4. RDMA-wild
We propose RDMA-wild, a Hogwild-style parallelized SGD
over distributed systems using a RDMA network. It takes a
similar approach as Hogwild in the sense that it allows work-
ers to work asynchronously. We aim to take full advantage
of RDMA as discussed in the previous section.
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Figure 2. Hogwild overview

Assumptions. First, a highly fast and stable network should
be prepared for RDMA-wild. This can be realized by
RDMA’s fast and stable performance, which could not have
been achieved by classical networks such as TCP. For ex-
ample, RDMA can saturate the network limit of Infiniband
100Gb, and achieve ∼ 2µs round-trip latency whereas TCP
cannot (Frey & Alonso, 2009). Second, almost identical
machines should be deployed for RDMA-wild. Third, pre-
emption by other applications is forbidden. The second
and third assumption seem to be strict but machine learning
tasks are becoming larger and more significant, so these
assumptions are not as strict in practice.

4.1. Overview

RDMA-aware. Taking full advantage of RDMA’s capa-
bility is important for accelerating DSGD. As most ML
models’ parameters are fixed and RDMA’s asynchronous
property matches well with asynchronous DSGD, we ba-
sically use one-sided RDMA write instead of two-sided
RDMA write in order to benefit from the fast and seamless
remote write rate. Plus, we avoid local copies of models
and gradients other than the remote copy where we avoid
potential performance bottleneck as RDMA does not copy
through network path. As shown in figure 3, RDMAwild
has no local copies of models and gradients, but just remote
copies of gradients in the parameter server, and a remote
model copy in the worker.

Difference from Hogwild. Although RDMA-wild was in-
spired by Hogwild, it has several differences which originate
from the distributed RDMA setting.

First, RDMA-wild has remote copies of the global model w
over workers and remote copies of worker’s local gradient g
in the server that form a gradient table as shown in Figure 3.
Note that those remote copies are optimal in the sense that
each remote computing unit must have its own data copy
for computation.

Second, RDMA-wild carefully designates threads to the
four main operations described in section 2: Op1, Op2,
Op3, and Op4. Basically, we assign the pair Op1: Server

Figure 3. RDMA-wild overview

updates model and Op2: Server pushes a new model to work-
ers to a single thread in the server and let it conduct them
sequentially, which is illustrated by a red line in Figure 3.
This will eliminate the potential race condition error so that
RDMA-wild can work more reliably in various ML tasks
even including dense optimization. Similarly, we assign
the pair Op3: Worker computes a new gradient using a new
model and dataset and Op4: Worker pushes a new gradient
to server to each worker thread in worker nodes and conduct
them sequentially. This is represented by the blue and green
lines in Figure 3.

4.2. Algorithm & Implementation

Design choices and challenges. When designing asyn-
chronous DSGD for RDMA, there are two main design
choices (DC1 & DC2) and challenges (C1 & C2) outlined
as follows:

• DC1: How to aggregate new gradients and update the
model in the server.

• DC2: How to push a new model to workers.

• C1: How to prevent gradient loss when allowing
the server thread and worker threads to work asyn-
chronously.

• C2: How to detect a new gradient in the server and a
new model in workers.

As for DC1, whereas the server in Sync-DSGD sums up
gradients, divides them by the number of machines N , and
updates the model, RDMA-wild first divides a single gradi-
ent by N and updates the model w (line 13 in Algorithm 1).
This is because RDMA-wild workers work asynchronously
so that the server should provide them a new model asyn-
chronously.
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Algorithm 1 RDMA-wild server thread

1: Input: learning rate α, initial parameters w0, number
of batches T , number of epochs E, number of machines
N

2: // Initialize
3: for node id = 1 to N do
4: GV num[node id] = −1;
5: LGV num[node id] = −1;
6: end for
7: receivers = {};
8: // Training
9: while training do

10: for node id = 1 to N do
11: // Detect new gradients
12: if GV num[node id] > LGV num[node id]

then
13: Update model: wt ← wt−1 − α

N · g[node id];
14: LGV num[node id] = GV num[node id];
15: receivers = receivers ∪ node id;
16: end if
17: end for
18: if receivers ! = {} then
19: Push wt and LGV num vector to receivers;
20: receivers = {};
21: end if
22: end while

As for DC2, RDMA-wild acts like a barter system where
once a worker gives its new gradient, the RDMA-wild server
gives back a new model w to the worker (line 18-20 in Al-
gorithm 1). We empirically find that this method is more
efficient than broadcasting w to all the workers as it offloads
the burden to the underlying network making it achieve
better system performance without losing statistical perfor-
mance.

Data structure. Before discussing how RDMA-wild’s
worker and server resolve the challenges C1 and C2, let
us first look at RDMA-wild’s data structure. As illustrated
in Figure 4, we assign a different version number to each
gradient, called GV num (Gradient Version number). If a
worker computes its gradient from the kth mini-batch of a
training dataset partition, the gradient’s GV num is k. Note
that, for this versioning method and better systems perfor-
mance, we implement the sequential scan SGD that shuffles
training data in advance and compute gradient by scanning
the training dataset from left to right rather than sampling
training instances on the fly, which is what regular SGD
does.

We should also keep track of the last gradient version num-
ber called LGV num (Last Gradient Version number) in
addition to GV num in order to resolve C1 and C2. As
illustrated in Figure 4, we store workers’s LGV nums right

Algorithm 2 RDMA-wild worker thread

1: Input: learning rate α, initial parameters w0, number
of batches T , number of epochs E, number of machines
N , per-machine mini-batch size B

2: // Initialize
3: LGV num[my node id] = −1;
4: GV num = −1;
5: // Training
6: for i = 1 to E do
7: for i = 1 to T do
8: while LGV num[my node id] != GV num do
9: wait;

10: end while
11: Select a mini-batch data D1, ..., DB of size B;
12: Compute gradient: gt ← 1

B

∑B
b=1∇f(wt;D);

13: GV num+ = 1;
14: Push gt and GV num to parameter server;
15: end for
16: end for

Figure 4. RDMA-wild data structure

next to the model memory region in the form of vector.

Workers. To resolve the issue of C1, RDMA-wild takes
the conservative approach that the server and worker work
synchronously whereas workers work asynchronously with
respect to each other. Before computing a new gradient,
RDMA-wild workers check if the previously pushed gra-
dient has been consumed by the server for a model update
(line 8-10 in Algorithm 2). This is because workers can push
the next gradient and overwrite the previous gradient in the
server before the server consumes it for a model update,
which causes gradient loss. This is an important issue as
gradient loss causes incomplete training and this can gen-
erate negative side effects. If specific versions of gradients
are lost multiple times over epochs, this can lead to biased
training. Even though this may not be an issue when the
probability distribution of gradient loss is uniform and the
number of epochs E is large, RDMA-wild pursues a stable
and robust system by guaranteeing no gradient loss.
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After making sure that the previous gradient has been con-
sumed by the server, it computes a new gradient, increments
GV num by one, and pushes them to the server (line 11-14
in Algorithm 2).

Server. To resolve the issue of C4, the server thread com-
pares GV num and LGV num, as described in the line 12
in Algorithm 1. To elaborate, if GV num[node id] is incre-
mented by the worker thread’s RDMA write with node id
and becomes greater than LGV num[node id], that means
g[node id] has been updated. g[node id] stands for the gra-
dient of the worker with node id. Note that the GV num
vector lies vertically as a column of the gradient table and the
LGV num vector lies horizontally right next to the model
w.

After detecting a new gradient, the server updates the model,
LGV num, and registers its node id to the receivers set
to where the new model will be pushed (line 13-15 in Algo-
rithm 1). After, it pushes the new model w and LGV num
vector to the receivers using one-sided RDMA write (line
18-21 in Algorithm 1).

RDMA-wild’s data structure and its atomic one-sided
RDMA transfer are implemented using SST(Shared State
Table) in Derecho (Jha et al., 2019).

5. Evaluation
As RDMA-wild is an optimization algorithm for loss func-
tions, we test it under two different problem settings: convex
and non-convex optimization problems. For convex prob-
lems, we use a simple Logistic Regression (LR) and LR with
Random Fourier Features (LR + RFF) (Rahimi & Recht,
2007). For non-convex problems, we use a fully-connected
neural network (FCNN).

Evaluating optimizers on convex problems is meaningful
because we can get more detailed information than non-
convex problems as the distance to the global unique optimal
model w∗ can be measured. Evaluating on non-convex cases
is also important as Neural Networks have many practical
applications in the real-world.

For each problem, we evaluate and analyze the statistical
and system performance of RDMA-wild by comparing to
the following baselines: single node mini-batch SGD and
synchronous DSGD. The system performance metrics are
training wall-clock time, and scalability for larger models
and more workers. The statistical performance metrics are
training/testing accuracy and convergence rate.

5.1. Setup

We used 16 nodes (1 server, 15 workers) as our cluster run-
ning Ubuntu 18.04 of Linux kernel 5.0.0 connected with a
100Gbps (12.5GB/s) RDMA InfiniBand switch (Mellanox

SB7700). Each node is equipped with 100GB RAM, 32
cores, and Mellanox MCX456AECAT Connect X-4 VPI
dual port NICs. We implement logistic regression and a
fully connected neural network with C++ using CBLAS in
order to use the CPU parallelism from SIMD instructions
for matrix computations. For logistic regression with RFF,
we preprocessed our input data through a RFF Python im-
plementation and trained the RFF-transformed dataset with
the C++ logistic regression.

All the evaluations were performed on a server cluster with
16 nodes (1 server and 15 workers) with MNIST handwritten
digits dataset (Yann LeCun, (accessed November 20, 2020).
And training was done with 64 bit double precision after
loading the entire input dataset on DRAM.

For hyper parameters, we performed grid search. Note
that as RDMA-wild is an asynchronous DSGD which is
non-deterministic for different trials, we took an average
of 5 trials for each grad point and picked the best hyper
parameters. In the experiment, we adopted the following
hyper-parameters for RDMA-wild: {LR: learning rate = 0.9,
weight decay = 0.9, batch size per worker = 8, epoch = 15},
{LR + RFF: learning rate = 9, weight decay = 0.9, batch
size per worker = 8, epoch = 50}, {FCCN: learning rate =
0.1, batch size per worker = 8, epoch = 50}.
For LR and LR + RFF, we initialized the initial model w0

with all zeros, and used the cross-entropy loss function. And
RFF is implemented to approximate the Gaussian kernel.
For FCNN, we set its structure to input layer (784 neurons)
X hidden layer (128 neurons) X output layer (10 neurons)
with ReLU activation and no regularization. We initialized
w0 with sampling from sqrt(2 / input layer size) * N(0,1)
distribution, which is a standard method (Kaiming Initial-
ization).

5.2. Training Time

Table 1 shows how much RDMA-wild improves training
time comparing to synchronous DSGD (Sync-DSGD). We
ran LR, LR + RFF, and FCNN for 15, 50, and 50 epochs up
until it converges resulting in 92%, 95%, and 99% accuracy,
respectively.

As shown in the Table 1, RDMA-wild achieves better wall-
clock time performance than Sync-DSGD. It improves 11%,
13%, and 13% compared to Sync-DSGD for LR, LR + RFF,
and FCNN, respectively.

RDMA-wild works more effectively for large models
(LR+RFF, FCNN) than LR. When we inflate the model
size 12.5X from 64KB to 800KB using RFF for LR, it gains
2% additional performance.
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Figure 5. Sync-DSGD Performance Breakdown (LR + RFF)

Table 1. Training Time (in seconds) of 15 workers with RDMA

MODEL MODEL SIZE SYNC RDMA-WILD IMPROVEMENT

LR 64KB 3.10 2.79 11%
LR + RFF 800KB 122.36 95.98 13%
FCNN 800KB 135.92 110.29 13%

5.3. Training Time Analaysis

To understand why RDMA-wild outperforms Sync-DSGD,
we keep track of the time taken of the Op1, Op2, Op3, and
Op4 in the server and workers, and analyze their pattern.

Figure 5 and Figure 6 are performance breakdown of LR
+ RFF training from beginning to around 0.1 epoch. The
red slots are the time taken of Op1: Server updates model
and Op3: Worker computes a new gradient using a new
model and dataset which are related to computing. And the
green slots are the time taken of Op2: Server pushes a new
model to workers and Op4: Worker pushes a new gradient
to server which are related to networking.

As shown in Figure 5 and Figure 6, workers in RDMA-
wild work asynchronously whereas workers in Sync-DSGD
work synchronously. For example, from time 0.0 - 0.2 in
Figure 5, even though worker2-15 completed Op3 and Op4,
they cannot proceed to the next Op3 and Op4 as worker1
straggles. However, from time 0.0 - 0.2 in Figure 6, all
workers of RDMA-wild asynchronously proceed to the next
operations regardless of the straggler worker5. This RDMA-
wild’s asynchronous pattern reduces wait time of workers
resulting in better wall-clock time.

Even though workers work asynchronously in RDMA-wild,
the server and workers work synchronously due to the gradi-
ent loss issue. At time 1.5 in Figure 6, we can observe that
pattern. When the server straggles, workers halt temporar-

server

compute gradient in workers / update model in server
push gradient in workers / push model in server

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

worker10
worker11
worker12
worker13
worker14

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (ns) 1e8

worker15

Figure 6. RDMA-wild Performance Breakdown (LR + RFF)

ily. For LR and FCNN, we find the similar pattern and the
results are in the Appendix.

5.4. Accuracy

Even if RDMA-wild performs better than Sync-DSGD in
terms of systems performance (wall-clock training time),
its model staleness issue can drop its accuracy. Recall that
while one worker computes a new gradient with a model,
if the model in the parameter server is updated by other
workers, the computed gradient by the worker becomes less
accurate because it will be used to update a different copy
of the model, which is not intended.

Thus, to figure out how RDMA-wild effectively trades-off
between systems and statistical performance, we compare
RDMA-wild to Sync-DSGD as Sync-DSGD doesn’t have
the model staleness issue and achieves the same statistical
performance as a single threaded SGD.

Figure 7 shows that RDMA-wild maintains almost the same
training and test accuracy as Sync-DSGD per epoch for LR
+ RFF and FCNN.

5.5. Convergence Analysis

Even if we showed that RDMA-wild maintains the same
accuracy as Sync-DSGD in the previous section, it is insuffi-
cient to conclude that RDMA-wild converges well because
there can be some cases that a trained model shows good
accuracy even though it is far away from the optimal model.

Thus, we measure three extra metrics to ensure RDMA-
wild’s convergence: distance to the optimal model w∗, gra-
dient norm, and loss gap between our model and the optimal
model w∗. Note that as the model converges to w∗, its gradi-
ent norm approaches 0 in convex problems, in our case, LR
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(b) LR + RFF test accuracy
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(c) FCNN training accuracy
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Figure 7. Accuracy: RDMA-wild maintains almost the same ac-
curacy as Sync-DSGD for each epoch step while achieving better
systems performance.

Table 2. Training Time Speed-up of 15 workers compared to a
single node. Note that this is the identical experiment/result as
Table 1 but just normalized by a single node training time under
the same setting. Ideal speed-up is 15X.

MODEL MODEL SIZE SYNC RDMA-WILD

LR 64KB 2.76X 3.08X
LR + RFF 800KB 5.82X 7.42X
FCNN 800KB 1.58X 1.95X

and LR + RFF. As mentioned earlier, we can measure three
metrics for convex problems as we can obtain w∗ using
SVRG or GD, but we can not measure them for FCNN as it
is a non-convex problem. Therefore, we just show the loss
trend for FCNN.

Figure 8 shows that RDMA-wild converges to the optimal
model w∗ showing the same performance as Sync-DSGD
per epoch for LR + RFF and FCNN.

5.6. Scalability

Lastly, we show the scalability of Sync-DSGD and RDMA-
wild compared to a single machine wall-clock time. Differ-
ently from the experiment setup of Figure 1 in the section 1,
where the batch-size per worker is 60, we set it to 8 which
is 7.5 times smaller. This is because we aim to observe
RDMA-wild performances under a more challenging setup.
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(a) LR + RFF distance to w∗
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(b) LR + RFF gradient norm
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(c) LR + RFF loss gap to w∗
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Figure 8. Convergence Analysis: RDMA-wild converges to the
optimal model showing the same performance as Sync-DSGD per
epoch.

In Figure 1, the RDMA network is not a bottleneck with a
mini-batch size of 60 whereas TCP is a bottleneck. Hence,
we shift the bottleneck to the network by reducing the mini-
batch size to 8. Note that a smaller mini-batch size under the
same epochs brings more frequent networking. Analyzing
the results in this extreme setting is meaningful as updating
the model more frequently with a smaller mini-batch is one
of the main reasons why mini-batch SGD outperforms GD.

Table 2 shows interesting results. Even though RDMA-wild
achieves 7.42X speed-up for LR+RFF, it achieves poor scal-
ability 3.08X and 1.95X on LR and FCNN, respectively. We
conjecture this is because RFF transforms the sparse MNIST
dataset (density: 20%) to a high dimensional dense dataset
(density: 100%) for better accuracy 1. Due to this RFF
property, matrix computations for LR + RFF takes much
longer than LR and FCNN as all elements of LR + RFF
matrices should be computed. Note that, for sparse matrix
multiplications, most elements can be filled out without any
computations by CBLAS. Therefore, the relative network
overhead of LR + RFF is much smaller than LR and FCNN.
Thus, RDMA-wild could achieve better scalability for LR +
RFF in our experiment setup.

Under this extreme setup, RDMA-wild outperforms Sync-

18,994,156 non-zero elements / 47,040,000 total elements in
MNIST, 0 non-zero elements / 600,000,000 total elements in RFF
transformed MNIST.
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DSGD for all cases in scalability.

6. Limitations & Future Work
To resolve the gradient loss issue, RDMA-wild limits asyn-
chrony between server and workers. We can observe that
this limits scalability when the mini-batch size is small
through Table 2 and Figure 6. In addition to this, even
through RDMA relieves the network bottleneck of the cen-
tralized parameter server compared to TCP, we find that a
network bottleneck still exists due to its inherent central-
ized structure as observed in Figure 6. Therefore, future
work should explore how to make the server and workers
work asynchronously without any gradient loss and how to
resolve the server’s network bottleneck.

7. Conclusion
RDMA accelerates DSGD as it significantly reduces net-
work overhead. We propose RDMA-wild in which workers
work asynchronously, reducing the wait time of workers
which results in faster training times than Sync-DSGD. We
solve the gradient loss and new gradient detection issues that
occur when developing asynchronous DSGD for RDMA.
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Figure 9. Sync-DSGD Performance Breakdown (LR)
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Figure 10. RDMA-wild Performance Breakdown (LR)
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Figure 11. Sync-DSGD Performance Breakdown (FCNN)
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Figure 12. RDMA-wild Performance Breakdown (FCNN)


