2D to 3D Transfer Learning for Medical Images
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Abstract

Computer vision has long been of interest in the medical
field. Training models to do tasks such as organ and tumor
detection and segmentation reliably would give doctors a
great advantage in battling illnesses such as cancer. One
of the main issues with training such a segmentation model
is the lack of both 2D and 3D training data. A promising
approach to doing medical scan segmentation is transfer
learning. In this paper we employ transfer learning to seg-
ment tumors in 3D medical volumes. The 3D volumes are
CT scans of pancreas that may or may not contain tumors.
There are few pre-trained 3D neural networks, and 2D net-
works have the advantage of much larger data sets from
which to train. Therefore, we propose to use transfer learn-
ing to initialize 3D weight filters by using a 2D pre-trained
model. We will compare different methods of converting the
2D filters to 3D, and their effects on the segmentation accu-
racy calculated as intersection over union.

1. Introduction

The medical community greatly depends on body imag-
ing using 3D scanning techniques such as computer tomog-
raphy (CT), magnetic resonance imaging (MRI), and ultra-
sounds to diagnose and treat patients. Being able to train
a 3D neural network, that is a neural network that takes in
3D data, and segments organs and tumors within the body
would assist doctors in tasks like tumor detection. 3D imag-
ing data that could be used to train such a network is difficult
to come by for a variety of reasons. Since these imaging
techniques tend to be expensive, uncomfortable, and may
emit harmful radiation, they are usually only used when
necessary. Patients must also give consent for their medical
scans to be shared for use in research that does not directly
concern their treatment [9]. As a result, there is limited 3D
medical data available.

To deal with this challenge, we propose to use trans-
fer learning. However, there are not many pre-trained 3D

networks. As mentioned previously, it is difficult to find
enough data to pre-train a 3D network. One possible ap-
proach to dealing with this problem is to splice the 3D med-
ical scans into many 2D slices and then use them in a 2D
convolutional network. The concern behind doing so is
the loss of relevant spatial information; any two consec-
utive slices will be similar, as they are spatially close to
each other. Splicing the data into 2D images would cause a
loss in this valuable spatial similarity information. Hence,
our aim is to build a 3D convolutional neural network that
will make use of the spatial information in the CT scans.
Figure [I] shows the difference between a 2D convolution
and a 3D convolution. In this paper we propose to use a
pre-trained 2D convolutional neural network, and then use
weights from that network to initialize a 3D convolutional
neural network that will be used to segment 3D scans of the
pancreas as tumor, pancreas and background. Hence, we
will use transfer learning and convert the 2D network to a
3D network.

Conv2D Conv3D

Figure 1: The left plot is a 2D convolution filter that takes as
input a 2D region. The right plot is a 3D convolution filter
that takes as input a 3D region. The output feature map is
the same in both cases.[11]]



2. Related Research

A lot of work has been done using transfer learning
for 2D medical imaging. Limited work has been done in
exploring 3D transfer learning. There has also been some
research into transfer learning from 2D to 3D networks,
but with different tasks and different motivations than ours.
To our knowledge, no work has been done to transfer an
out-of-domain 2D network to a 3D network for the purpose
of medical image segmentation.

2.1. Transfer Learning and Medical Segmentation

Research done at the Division of Medical Image Com-
puting, at the German Cancer Research Center in Heidel-
berg, proposed a U-Net model called the No-New-Net [5].
The No-New-Net comprised of multiple 2D and 3D U-nets
and was used for medical image segmentation in the Med-
ical Segmentation Decathlon challenge [1]. The No-New-
Net is a self-adaptive model that can be used for segment-
ing medical scans of various organs. All the U-nets in this
model were trained separately from scratch. No transfer
learning was used, but the paper showed promising results
for using 3D networks for medical segmentation.

There are promising results for using out-of-domain
transfer learning for medical image data sets as well. Re-
search done across medical imaging labs uses ImageNet
pre-trained CNN models for recognition tasks [12]. The
2D ImageNet pre-trained network was transferred to a
2D medical image network for segmentation. This tech-
nique resulted in state-of-the-art performance in detection
of thoraco-abdominal lymph nodes, and provides validity
to our approach of applying 2D out-of-domain weights to
3D medical segmentation data.

A paper published in early 2018 proposed using 2D to
3D transfer learning in order to denoise low-dose CT scans
[[L1]. Their motivation stemmed from the rising popularity
of low-dose CT scans, which carry less radiation than reg-
ular CT scans, but produce lower-resolution images. They
used a pre-trained model to initialize the 3D model weights,
and noted that an advantage to this method is that it car-
ries fewer parameters than a newly-trained 3D model. They
trained a very specific 2D network called the Conveying
Path-based Convolutional Encoder-decoder and used that to
initialize a 3D model. We want to use a out-of-domain pre-
trained network that is trained on large image data like Im-
ageNet or RV-VOC12, fine-tune it on our 2D data, and use
that to initialize a new 3D network, which makes our ap-
proach slightly different.

The most similar approach to the one presented here was
done by Carreira et al at the Department of Engineering Sci-
ence at the University of Oxford [2]. Researchers at Oxford
used a 2D network pre-trained on the Kinetics data set [6]
and transferred the model to 3D video data to better learn

human actions between frames. In the 3D video data set,
the extra dimension is time, but in our 3D medical data the
third dimension is spatial. We believe that we can apply
some of the techniques used in their work and build upon
it. Furthermore, we want to see how well 2D to 3D trans-
fer learning works when the extra dimension in the data is
spatial and not temporal.

2.2. Initializing 3D Networks

In order to transfer a 2D neural network into 3D, a 3D
weight filter must be initialized using the 2D weights fil-
ters. Mansimov et al introduced some approaches to this
conversion in the paper ’Initialization Strategies of Spatio-
Temporal Convolutional Neural Networks’ [8]. Carreira et
al used some of the techniques in this paper on the kinetics
video data set and obtained promising results. The simplest
3D weight initialization is Zero Weight Initialization (ZWI)
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In this approach, the middle slice of a 3D filter is ini-
tialized to have the same weights as a corresponding 2D
filter. All other filter slices are initialized to matrices of ze-
ros. Note that ZWI without fine tuning is equivalent to a
2D network because we are only using information from a
single slice. With fine tuning, weights for adjacent slices
will be learned. The concern with using ZWI is that it ini-
tializes very high weights to the center slice of the filter,
while ideally all slices should yield a similar contribution.
As such, using Initialization by Averaging might yield
better results.
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A variation of Initialization by Averaging (@) is Initial-
ization by Scaling (3). Initialization by Scaling scales each
filter layer by a different weight that corresponds to its im-
portance.

T
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We attempt all three methods of weight initialization,
and compare the results to determine which method is the
most successful.

3. Data set

For this project, we used 3D CT scan images of pancreas.
This data was obtained from the Medical Segmentation De-
cathlon Challenge [1]]. The data was originally collected by
the Memorial Sloan Kettering Cancer Center. In the data



set, there are 282 3D volumes of portal venous phase CT
scans. The dimension of the images is 512 x 512 x d, where
d is the depth of the image. The depth varies for differ-
ent data samples. The data set also contains corresponding
ground truth segmentation labels for each 3D image. The la-
bels in this data set are the pancreas, pancreatic tumor, and
background. It is especially hard to accurately segment the
pancreas because the background is very large when com-
pared to the size of the tumor itself. Figure 2 shows a sample
2d slice of the 3D data.

(a) Image (b) Ground Truth Label

Figure 2: The picture on the left (a) above is one slice of
a 3D CT scan. The picture on the right (b) contains the
segmentation labels for the slice on the left. In (b), black is
background, grey is pancreas and white is tumor.

The provided images are gray-scale. We converted the
images to RGB images because the pre-trained 2D network
we use expects three-channel RGB images. Each CT image
was copied three times to serve as the RGB channels. Fur-
thermore, we re-scaled all the pixel values to be between 0
and 1.

4. Approach

The main method used in this paper is as follows:

1. Train a network on 2D images: The first step is to train
an out-of-domain 2D neural network in order to obtain
2D filter weights. These weights will be used for trans-
fer learning. Due to time restrictions, an already pre-
trained network was used for this project. We used a
dilated ResNet-18 [10][3]] that was pre-trained on the
PASCAL Visual Object Classes Challenge 2012 (RV-
VOC12) data [4]. RV-VOC contains 20 classes of nat-
ural images of people, animals, vehicles, and house-
hold objects [4].

2. Modify the 2D network: The 2D neural network must
be adapted to the three-class segmentation task at hand
(segmenting background, organ, and tumor) and fine-
tuned. The neural network was adapted by changing
the last layer to output one of three classes (instead of
one of twenty classes).

3. Initialize a 3D network: The 2D filter weights from the
2D neural network are used to initialize a 3D neural
network. The 3D medical images are then fed into the
neural network and the network is fine-tuned. Since
this is a 3D network, it should make use of spatial in-
formation between consecutive slices and out perform
the 2D network.

4.1. 2D segmentation as benchmark

To obtain a baseline for performance, we split our 3D
images into 2D slices. The images were split along the third
dimension, so every slice was a 512 x 512 2D image. As
mentioned above, to accommodate the pre-trained model,
we had to modify the last layer of the ResNet to output one
of three classes. Since we are using an out-of-domain neural
network we had to fine tune the network in order to obtain
reasonable results. We fine-tuned the pre-trained ResNet-18
using the 2D slices to get a baseline performance. Then, the
pre-trained model was applied to all 2D slices and the mean
intersection over union (IoU) score was evaluated.

4.2. 3D transfer learning

The next step was to use the 2D dilated ResNet-18 net-
work to initialize a 3D network. We made a 3D dilated
ResNet-18 by changing all the 2D filters to their 3D equiva-
lents. As shown in figure 1, a 2D filter and a 3D filter differ
in input regions but output feature maps that have the same
dimension. A 3D neural network needs more memory be-
cause of the extra dimension. As a result we could only use
a batch size of 2 (we used a batch size of 32 for the 2D
neural network). Since are batch size is low, training the
3D neural network was quite slow. An important choice we
had to make was deciding how to use the 2D filter weights
to initialize the weights of the 3D filters. We tested three
different methods of initialization. The results of the meth-
ods are presented in the next section.

5. Experiments and Results

In this work, we tested three possible ways to assign the
initial weights, i.e., padding with zero, averaging or cus-
tomized scaling over the channels (see Section 2.2). For Ini-
tialization by Scaling, the « values were chosen as follows.
For filters of kernel size 3: a; = 0.25, a2 = 0.5,a3 =
0.25. For filters of kernel size 7: a1 = a7 = 0.05, a5 =
ag = 0.1,a3 = a5 = 0.2, a4 = 0.3. In our 3D network,
all 3D filters have a kernel size of either 3 or 7.

The input to the 3D model was a 3D image. To ensure
that each 3D image had the same dimensions, we set the
depth of every image to 70. If the image had depth lower
than 70, we removed the image from the data set. If the
depth was greater than 70, we cropped the edges and only
used the middle 70 slices. The slices on the edges were



Model Mean IoU |
2D net 0.3325
3D net + random initialization* 0.3329
3D net + zero weight initialization* 0.3565
3D net + initialization by averaging* 0.3835
3D net + initialization by scaling* 0.3689

Table 1: Results
*Performance improves w/ longer training

mostly background, so this does not greatly affect the re-
sults. We removed about 25 data samples because they had
a depth lower than 70. The 3D neural network was fine-
tuned on the 3D images and the mean IoU was computed.
Table 1 shows the results obtained from the different exper-
iments conducted. For each experiment, the neural network
was trained for 30 epochs. The mean IoU values might seem
low, but the pre-trained network on the RV-VOC12 data set
only achieved a mean IoU of 0.59. Since we are adapting
this pre-trained network for an out-of-domain task, our IoU
scores are even lower, as is expected. Our main aim is to
show that custom initialized 3D networks outperform 2D
networks for our 3D segmentation task. Our experiments
show that this is indeed true.

We observed that the 2D ResNet mean IoU converges to
33.25% in about 5 epochs. Even after continued training,
the mean IoU did not increase past 33.25%. As such, this
is the best IoU score that we could obtain by fine-tuning a
RV-VOCI12 pre-trained ResNet-18 with 2D images.

On the other hand, for the 3D ResNet the mean IoU kept
increasing even after 30 epochs. We had to stop the training
at 30 epochs due to time constraints. We tried using dif-
ferent learning rates to make the network converge faster,
while keeping the learning rate low enough to prevent the
model from diverging. We used the Adam optimizer [7]]
with a learning rate of 0.001, betas of 0.9 and 0.999, and a
weight decay of 0.0001 to train our models. We see from
the results that the mean IoU obtained using a 3D ResNet
with random initialization is only marginally better than the
mean IoU obtained from using a 2D network. The 3D net-
work did seem to be improving but the mean IoU score did
not increase by much and it seems like it would take a very
long training time to get better results using the 3D network
with random initialization.

In comparison, the custom initialized 3D neural net-
works performed better and the mean IoU improved at a
faster rate. We see from the results in Table 1 that the 3D
ResNet + Initialization by Averaging yields the best results.
It is however possible that Initialization by Scaling produces
better results if different o weights were used.

6. Conclusions and Future Work

In conclusion, we have shown that 3D neural networks
have the capacity to outperform their 2D counterparts,
likely because they take into consideration the extra spa-
tial information between different slices of the 3D image.
The transfer learning performed did result in an improved
performance. However, one drawback of using 3D archi-
tectures is that they require more memory and time.

The work presented in this paper results in a number of
possibilities for future research. We would use better pre-
trained networks, that can then be used to initialize a 3D
neural network. Using a pre-trained model that is specif-
ically trained on medical data should yield better results.
U-nets have been used to achieve state-of-the-art results in
medical imaging tasks, so using a better suited pre-trained
model like a U-net could also lead to better results. Another
avenue for improvement is to explore other methods of us-
ing 2D filter weights to initialize 3D filter weights. Lastly,
it would be interesting to apply the technique described in
this paper to other 3D medical image segmentation data sets
and evaluate how well the technique performs on different
data sets.
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